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ABSTRACT

In this paper, we propose a method for handling focal length
changes in the SLAM algorithm. Our method is designed as
a pre-processing step to first estimate the change of the cam-
era focal length, and then compensate for the zooming effects
before running the actual SLAM algorithm. By using our
method, camera zooming can be used in the existing SLAM
algorithms with minor modifications. In the experiments, the
effectiveness of the proposed method was quantitatively eval-
uated. The results indicate that the method can successfully
deal with abrupt changes of the camera focal length.

Index Terms— SLAM, Camera Zoom, Augmented Re-
ality

1. INTRODUCTION

In augmented reality (AR), camera pose estimation is nec-
essary for achieving geometric registration between the real
and virtual worlds. Many kinds of camera pose estimation
methods have been proposed in the AR and computer vision
research fields. Especially, SLAM-based camera pose estima-
tion is an active research topic.

The SLAM-based camera pose estimation method esti-
mates camera pose and 3D structure of the target environ-
ment simultaneously. The SLAM algorithms are composed
of a tracking process and a mapping process. Natural features
in input images are tracked in successive frames, and 3D po-
sitions of natural features are estimated in the mapping pro-
cess. In general, intrinsic camera parameters are calibrated in
advance and these parameters are fixed in the SLAM-based
camera pose estimation process. This assumption means that
the SLAM algorithms do not allow to use a camera zooming,
because that would change the camera focal length.

In the computer vision research, many types of camera
parameter estimation methods have been proposed. These
methods can be divided into two groups: camera parameter
estimation for known and unknown 3D references. The latter
is also often referred to as auto-calibration or self-calibration.

Camera parameter estimation from 2D-3D correspon-
dences is known as a Perspective-n-Point (PnP) problem.
Many methods for solving the PnP problem have been pro-
posed when the intrinsic camera parameters are unknown
[1, 2, 3, 4, 5]. These methods can estimate the focal length

and extrinsic camera parameters, but they cannot be used in
the unknown environment because all of these methods need
several 3D reference points.

Camera parameter estimation methods from 2D-2D corre-
spondences have also been proposed [6, 7, 8]. They are usu-
ally used in offline 3D reconstruction, such as the structure-
from-motion technique [9]. Although camera parameter esti-
mation from 2D-2D correspondences is possible in unknown
environments, these methods are not suitable for SLAM al-
gorithms. For example, the method [6] needs projective re-
construction in advance, and the methods [7, 8] consider two
view constraint only. On the other hand, pre-calibration based
methods have been proposed [10, 11]. These methods can
estimate the focal length and the extrinsic camera parame-
ters accurately using the dependency of each intrinsic camera
parameters. In order to make a lookup table of the intrinsic
camera parameter dependency, intrinsic camera parameters at
each magnification of camera zooming are calibrated in ad-
vance. Although the pre-calibration information gives strong
constraint in an online camera parameter estimation process,
the pre-calibration process decreases the usability of the ap-
plication.

In this research, we focus on SLAM-based camera pose
estimation, and we propose a method for handling the fo-
cal length change caused by camera zooming. The proposed
method is designed as a preprocessing step of the SLAM al-
gorithm. The camera zooming effect in the current image is
compensated for by using the estimated focal length change,
as shown in Fig. 1. By using the proposed preprocessing
method, the existing SLAM algorithms can handle camera
zooming.

2. REMOVING THE CAMERA ZOOMING EFFECT

The method is composed of four parts, as shown in Fig. 2. In
our method, we assume that the principal point is located at
the center of the image, aspect ratio is unity, skew is zero, and
lens distortion can be ignored. In addition, we assume fixed
intrinsic camera parameters in the initialization process of the
SLAM algorithm. These assumptions are reasonable for the
current consumer camera devices and the SLAM algorithm.
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Fig. 1. Image compensation for removing the camera zoom-
ing effect. The left image is an input image. The right image
is an compensated image by using the estimated focal length
change.
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Fig. 2. Flow diagram of the proposed method.

2.1. Focal Length Change Estimation

The focal length change estimation process is based on the
method described in [12]. In this method, focal lengths of
each image are estimated from projection matrices of the
cameras. Basically, this method has been designed for of-
fline metric reconstruction because projective reconstruction
is needed before focal length estimation. We extended this
method to achieve sequential focal length estimation. In our
approach, the projection matrix of the current frame is esti-
mated using tracked natural features. The focal length change
is determined based on the estimated projection matrix and
the projection matrices of the keyframes.
Projection Matrix Estimation: In order to estimate the
projection matrix of the current frame, natural features used
for estimating camera parameters of the previous frame are
tracked by using the Lucas-Kanade tracker [13]. By using
these tracked features, the projection matrix MMM of the current
frame can be estimated by minimizing the following cost
function [14].

Ep = ∑
i∈SSS
||xxxi−proj(XXX i)||2 (1)

where SSS represents a set of tracked natural feature points in
the current frame, and xxxi represents the image coordinates of
the tracked natural feature i, and proj() is a function for pro-
jecting the 3D point XXX i onto the image using MMM. The initial
estimate of the projection matrix MMM is obtained with a linear
algorithm and then the cost function is minimized by using
the Levenberg-Marquardt algorithm.
Focal Length Estimation: The focal length of the current
frame is estimated from the projection matrices of the cur-
rent frame and the keyframes. To estimate the focal length,
at least three view points are needed [12]. In the map initial-
ization process, two keyframes are used for estimating initial
3D points by a stereo measurement [15]. Because we already
have two keyframes after the initialization process, the focal
length estimation can be done in real-time during the tracking
process.

First, the keyframes that have been used for determining
3D positions of tracked natural features are selected from the
map. In addition, the first keyframe which is used for ini-
tialization is always selected to provide the reference focal
length. The relationship between intrinsic camera parameters
and projection matrices of the selected keyframes and the cur-
rent frame can be described as follows:

KKKiKKKT
i = MMMiΩ

∗MMMT
i (2)

where Ω∗ is the absolute quadric that has the 4× 4 matrix
structure. Intrinsic camera parameter matrices KKKi and the
absolute quadric Ω∗ can be calculated using the rank 3 con-
straint [12].

Magnification of camera zooming can be estimated from
the focal length ratio f1,t between focal lengths of the first
keyframe f1 and the current frame ft as follows:

f1,t = f1/ ft (3)

It should be noted that the focal length ratio f1,t can be re-
garded as the absolute focal length value because there is a
scale ambiguity in SLAM-based reconstruction. If the initial
focal length is assumed to be 1, the focal length ratio becomes
the value of the focal length in the successive frames.

2.2. Robust Filtering

The focal length estimation process is sensitive to estimation
errors of the projection matrices. In order to achieve stable
focal length ratio, we employ two filtering processes: me-
dian filtering for robust estimation and temporal filtering for
smooth estimation.
Median Filtering for Robust Focal Length Estimation: In
order to achieve stable estimate, we employ the median filter
for estimated focal length ratios obtained by Sec. 2.1. In the
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Fig. 3. Focal length ratio estimation by median filtering.

focal length estimation process, the focal length ratio between
the first keyframe and the current frame f1,t is estimated, and
the focal length ratios between other keyframes and the cur-
rent frame f2,t , f3,t , . . . , fn,t are also estimated as shown in
Fig. 3 (n represents the number of selected keyframes). In
addition, focal length ratios between the first keyframe and
the other keyframes f1,2, f1,3, . . . , f1,n have already been esti-
mated before the focal length estimation process of the cur-
rent frame.

By using these values, we can obtain candidates of the
focal length ratio between the first keyframe and the current
frame as follows:

f1,t , f1,2 f2,t , f1,3 f3,t , . . . , f1,n fn,t (4)

The median value of these candidates is selected as the focal
length ratio between the first keyframe and the current frame
f1,t .
Temporal Filtering for Smooth Estimation: After median
filtering the focal length ratio still contains some noise that
would cause annoying jitter between frames. In order to re-
duce the effect of the noise we employ temporal filtering for
smoothing the estimate. The estimated focal length ratio is
filtered by the following equation.

f̂1,t = α f1,t +(1−α) f̂1,t−1 (5)

where f̂ represents the filtered focal length ratio and α

represents a coefficient for smoothing. The actual focal length
ratio can change in successive frames. In order to tolerate
smooth changes, we define the following criteria.

•
∣∣ f1,t − f̂1,t−1

∣∣ < ε1: Estimated focal length ratio of the
current frame should be similar to that of the filtered
previous value.

• | f1,t − f1,t−1| < ε2: Similar focal length ratios are esti-
mated in the current and previous frames.

• | f ′1,t − f ′1,t−1| < ε3: Gradients of estimated focal
lengths are similar. Gradients are calculated by f ′1,t =
f1,t − f1,t−1, f ′1,t−1 = f1,t−1− f1,t−2.

The second and third conditions are for detecting the focal
length change. If the estimated focal length ratio ft satisfies

one or more conditions, f1,t is accepted and used in the fil-
tering process (Eq.(5)). If all conditions are false, the filtered
focal length ratio of the previous frame is used as an input
to the filtering process f1,t = f̂1,t−1. In addition, sometimes
the focal length ratio cannot be acquired by the focal length
estimation method described in Sec.2.1. This happens when
the solution for f 2

i in Eq.(2) has a negative value. The fil-
tered focal length ratio of the previous frame is also used in
Eq.(5) when f 2

i < 0. Finally, the input image is scaled using
the filtered focal length ratio f̂1,t .

2.3. Bundle Adjustment

In bundle adjustment which is a part of the mapping process
shown in Fig. 2, changes of the focal length should be also
compensated for. In the proposed method, we modify the cost
function for dealing with the scale factor which means the
error of focal length ratio estimation in the online process.

E = ∑
i∈FFF

∑
j∈PPP

∣∣∣∣xxxi j−proji (XXX j)
∣∣∣∣2 (6)

where FFF and PPP represent a set of keyframes and a set of
reconstructed 3D points respectively. proji () represents pro-
jection of 3D points XXX j onto the keyframe i. 3D points are
projected using extrinsic and intrinsic camera parameters.

x̄xxi j ∝ si [RRRi|ttt i]XXX j (7)

where RRRi and ttt i represent rotation and translation compo-
nents respectively, and si represents the scale factor for the
keyframe i. x̄xxi j represents the projected position of XXX j in the
image coordinate system. Solutions for RRRi, ttt i, si, and XXX j are
calculated by minimizing the cost function E using non-linear
optimization method such as the Levenberg-Marquardt algo-
rithm. After the optimization process, the focal length ratio
of each keyframe is updated.

fi,new = fi,old/si (8)

3. EXPERIMENT

To demonstrate the effectiveness of the proposed method, the
accuracy of focal length estimation was quantitatively eval-
uated. In the experiment, we used PTAM [15] as an existing
SLAM algorithm. In all experiments, the hardware included a
desktop PC (CPU: Corei5-3570 3.4 GHz, Memory: 8.00 GB)
and a Sony NEX-VG900 video camera, which records 640 ×
480 pixel images with an optical zoom lens (Sony SEL1018,
f = 10mm−18mm).

In this experiment, the accuracy of estimated focal length
ratio is evaluated with two sequences: non-zoom sequence
and zoomed sequence. In the both experiments, first 300
frames are used for initialization, and the focal length is set
at a fixed value 1.0.
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Fig. 4. The estimation result of focal length ratio in non-zoom
sequence.
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Fig. 5. The estimation result of focal length ratio in zoomed
sequence.

Non-zoomed Sequence: In this case, the camera moves
freely in the real environment, which includes translation and
rotation. A maximum distance between the camera and the
target scene was about 2 meters.

Fig. 4 shows the result of focal length estimation. In this
figure, estimated focal length ratios should lie at 1. An aver-
age error for focal length estimation was 0.012 and its stan-
dard deviation was 0.019. This result confirms that the focal
length of the input image was accurately estimated. It also
indicates that the proposed method does not have much effect
on the accuracy of the conventional SLAM algorithm.
Zoomed Sequence: In this case, the camera moves freely
in the real environment, which includes translation, rotation,
and camera zooming. In order to evaluate the accuracy of
focal length estimation, reference focal length values for each
image were obtained by an offline reconstruction method [16,
17]. The reference values were obtained at every 30th frames.
Figs. 5 and 6 show the result of focal length estimation and

its estimation errors in each frame respectively. In Fig. 5,
triangle points represent reference focal length ratio obtained
from offline reconstruction. An average error for focal length
estimation was 0.113 and its standard deviation was 0.109.
The result confirms that the proposed method can estimate
the focal length change with reasonable accuracy. However,
estimated focal length ratio involves a small delay. This delay
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Fig. 6. Focal length estimation error in each frame.

is caused by the temporal filtering process.
In addition, we can observe a large spike around the

4000th frame. At this time, the camera moved along the opti-
cal axis with simultaneous zooming. In general, zooming and
translation along the optical axis cause an ambiguity which is
difficult to handle especially if the scene structure is relatively
flat. For SLAM this is probably a rare case, and it could be
avoided by adding more heuristics to the algorithm.

The execution time for our preprocessing algorithm is
shown in Table 1. A half of the processing time for esti-
mating the projection matrix was used by the Lucas-Kanade
tracker (5.51 ms). The result confirms that the proposed
method still can work in realtime.

4. CONCLUSION

In this paper, we proposed a focal length change compensa-
tion method for dealing with camera zooming in SLAM al-
gorithms. The main benefit of this method is that the camera
zooming effect in the input image can be compensated before
the tracking process in SLAM algorithm which enables use
of existing SLAM algorithms together with our method. In
order to estimate the focal length change, we developed an
online focal length estimation framework. In this framework,
the estimated focal length is filtered in two stages to achieve
more stable result. The effectiveness of the proposed method
was demonstrated in the experiments.

Table 1. Average computational time for each process.
Process time (ms)

Projection matrix estimation 11.78
Focal length estimation 0.08

Robust filtering 0.51
Image compensation 0.27

Map tracking 13.58
Total 26.22
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