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Abstract

In this paper, we propose a method for estimating the camera pose for an environment in which the intrinsic camera parameters
change dynamically. In video see-through augmented reality (AR) technology, image-based methods for estimating the camera
pose are used to superimpose virtual objects onto the real environment. In general, video see-through-based AR cannot change the
image magnification that results from a change in the camera’s field-of-view because of the difficulty of dealing with changes in
the intrinsic camera parameters. To remove this limitation, we propose a novel method for simultaneously estimating the intrinsic
and extrinsic camera parameters based on an energy minimization framework. Our method is composed of both online and offline
stages. An intrinsic camera parameter change depending on the zoom values is calibrated in the offline stage. Intrinsic and
extrinsic camera parameters are then estimated based on the energy minimization framework in the online stage. In our method,
two energy terms are added to the conventional marker-based method to estimate the camera parameters: reprojection errors based
on the epipolar constraint and the constraint of the continuity of zoom values. By using a novel energy function, our method can
accurately estimate intrinsic and extrinsic camera parameters. We confirmed experimentally that the proposed method can achieve
accurate camera parameter estimation during camera zooming.

Keywords: Camera Pose Estimation, Augmented Reality, Zoomable Camera, Epipolar Constraint

1. Introduction1

Augmented reality (AR) is a technique that can integrate the2

real and virtual worlds. AR enables us to obtain additional in-3

formation, such as navigation data, guidance, and virtual avatars.4

Recently, AR applications have been achieved by using a video5

see-through-based method. In this method, virtual information6

is overlaid onto a camera image, and the generated AR images7

are then shown to the user on a display device. In video see-8

through-based AR applications, geometric registration between9

the real and virtual worlds is generally required for overlaying10

the virtual information. Geometric registration for the video11

see-through-based AR can be achieved by estimating camera12

parameters.13

The methods that are used to estimate camera parameters14

can be divided into two groups: those for estimating intrinsic15

camera parameters, including focal length, image center, and16

lens distortion, and those for estimating extrinsic camera pa-17

rameters, including camera positions and orientations. In most18

AR applications, intrinsic camera parameters are calibrated and19

fixed before the online extrinsic camera parameter estimation20

process. Many types of methods for estimating camera param-21

eters have been proposed. In these methods, a square marker-22

based method for estimating extrinsic camera parameters [1] is23

widely used in various applications, because this method allows24

the easy construction of a robust AR environment.25

Changing the camera’s field-of-view, termed “camera zoom-26

ing,” cannot be used in conventional AR applications because27

intrinsic camera parameters change in the zooming process.28

Conventional AR applications assume the use of a head-mounted29

display (HMD) for overlaying virtual information [1, 2]. Cam-30

era zooming has not been used for HMDs because zooming31

gives users an unnatural sensation. This sensation is caused by32

the difference between the actual head motion and the motion33

perceived in the displayed images. Thus, the limitation of fixed34

intrinsic camera parameters in camera parameter estimation is35

not relevant in conventional AR applications.36

In contrast, many types of mobile AR applications for over-37

laying virtual information that run on smartphones and tablet38

PCs have been developed recently [3, 4]. In addition, AR tech-39

nology is often used in the production of TV programs. Al-40

though camera zooming in these mobile AR applications or TV41

programs rarely gives the user an unnatural sensation, these42

technologies do not allow its use because of the difficulty in-43

volved in handling camera zooming in the camera parameter44

estimation process. Fig. 1(a) shows the results of overlaying45

a computer-generated (CG) object without camera zooming.46

Figs. 1(b) and 1(c) show the results of geometric registration47
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(a) (b) (c)

Figure 1: Example of overlaying a CG object during camera zooming. (a)
Without zoom, the intrinsic camera parameters are the same as those used in
the calibration process. (b) When the zoom value changes, the CG object is
overlaid using the same intrinsic parameters values as in (a). (c) The zoom
value was changed. The CG object was overlaid using the proposed method,
which considers intrinsic camera parameter changes.

during camera zooming. In the case shown in Fig. 1(b), the48

registration error increased because inconsistent intrinsic pa-49

rameters were used to estimate the extrinsic camera parameters.50

However, in the case shown in Fig. 1(c), accurate geometric51

registration was achieved by using the proposed method to han-52

dle the intrinsic camera parameter change during camera zoom-53

ing. Removing the limitation caused by fixed intrinsic camera54

parameters in camera parameter estimation opens possibilities55

in many AR applications.56

To realize simultaneous intrinsic and extrinsic camera pa-57

rameter estimation during camera zooming, we propose a cam-58

era parameter estimation method that uses a pre-calibrated in-59

trinsic camera parameter change and a novel energy function60

for online camera parameter estimation1. In our method, two61

energy terms are added to the conventional marker-based method62

for estimating camera parameters: (1) the reprojection errors of63

tracked natural features and (2) the constraint of the continuity64

of zoom values. The tracked natural feature points implicitly65

give a 3D structure of the scene, and the continuity term gives66

the temporal constraint for the camera parameters. Using the67

new energy function, our method can accurately and stably es-68

timate intrinsic and extrinsic camera parameters in the online69

estimation process. Our method requires a pre-calibration pro-70

cess. However, this process needs to be executed only once.71

Thus, this process does not reduce the usefulness of the pro-72

posed method. The remainder of this paper is organized as fol-73

lows. In Section 2, we discuss related work on image-based74

camera parameter estimation. The proposed framework is de-75

scribed in Section 3, and a quantitative and qualitative evalu-76

ation of its effectiveness is presented in Section 4. Finally, in77

Section 5, we present the conclusion and future work.78

2. Related Work79

Many vision-based methods for estimating camera param-80

eters have been proposed in the fields of AR and computer vi-81

sion. In these methods, camera parameters are estimated by82

1Part of this paper was presented at the International Symposium on Mixed
and Augmented Reality, 2013 [5]. In the present paper, we address the auto
balancing of each energy term, and we have added a quantitative and qualitative
evaluation of the proposed method.

solving the Perspective-n-Point (PnP) problem using 2D-3D83

corresponding pairs. There are two groups of methods for solv-84

ing the PnP problem: camera parameter estimation under the85

conditions of either known or unknown intrinsic camera pa-86

rameters. Recently, numerous methods have been proposed to87

solve the PnP problem when the intrinsic camera parameters are88

known [6, 7, 8, 9, 10, 11]. Most camera parameter estimation89

methods belong to this category. In AR, 2D-3D corresponding90

pairs are obtained using a 3D model of the environment or a91

feature landmark database [12, 13, 14].92

Solutions for the PnP problem when the intrinsic camera93

parameters are not known have also been proposed [15, 16].94

These methods can estimate the absolute extrinsic camera pa-95

rameters and focal length from 2D-3D corresponding pairs. How-96

ever, in these methods, the accuracy of the estimated camera97

parameters decreases according to the specific geometric rela-98

tionship of the points. To solve this problem, Bujnak et al. pro-99

posed a method for estimating extrinsic camera parameters and100

focal length that uses a Euclidean rigidity constraint in object101

space [17]. Furthermore, they improved the computational cost102

of the method [17] by joining planar and non-planar solvers103

[18]. The method [18] can be implemented in real time on104

a desktop computer. However, the accuracy of the estimated105

camera parameters still decreases in this method when the opti-106

cal axis is perpendicular to the plane formed by the 3D points.107

Recently, Kukelova et al. proposed the five point-based method108

[19]. This method can achieve more stable camera parameter109

estimation than can the method proposed by [18]. However,110

most marker-based applications use a square marker. In these111

applications, the camera parameters should be estimated from112

four 2D-3D corresponding pairs.113

Unlike in the PnP problem, to estimate the intrinsic and ex-114

trinsic camera parameters corresponding pairs of 2D image co-115

ordinates in multiple images are used [20, 21, 22]. These meth-116

ods are usually used in 3D reconstruction from multiple images,117

as in the structure-from-motion technique [23]. Although these118

methods do not need any prior knowledge of the target environ-119

ment, they cannot estimate absolute extrinsic camera param-120

eters. Sturm proposed a self-calibration method for zoom-lens121

cameras that uses pre-calibration information [24]. The idea be-122

hind this method is similar to that of our proposed method. In123

this method, intrinsic camera parameters are calibrated and then124

represented by one parameter. In the online process, the estima-125

tion of the intrinsic and extrinsic camera parameters uses this126

pre-calibration information and is based on the Kruppa equa-127

tion. However, the solution of the Kruppa equation is not ro-128

bust to noise, and this method cannot estimate absolute extrin-129

sic camera parameters. These methods are impractical for some130

AR applications because they require that the user arrange the131

CG objects and coordinate system manually.132

In contrast to the previous methods, the method that we133

propose accurately and stably estimates the intrinsic and ab-134

solute extrinsic camera parameters using an epipolar constraint135

and a pre-calibrated intrinsic camera parameter change. In our136

method, a fiducial marker is used to obtain 2D-3D correspond-137

ing pairs. Natural feature points that do not have 3D positions138

are used to stabilize the camera parameter estimation results.139
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Offline Stage

1. Camera calibration for each magnification of the 
camera zooming

2. Third order spline fitting for each parameter change

Online Stage

1. KLT-based natural feature tracking between 
successive frames

2. Fiducial marker detection

3. Calculation of the energy function

4. Intrinsic and extrinsic camera parameter estimation 
by minimizing the energy function

Figure 2: Flow diagram of the proposed method.

Estimated intrinsic camera parameters are constrained by the140

pre-calibrated intrinsic camera parameter change.141

3. Intrinsic and Extrinsic Camera Parameter Estimation142

for Cameras with Zoom Capabilities143

In this section, we describe our method for estimating in-144

trinsic and extrinsic camera parameters in which an energy func-145

tion is minimized based on the epipolar constraint. Our method146

is composed of offline camera calibration and online camera147

parameter estimation, as shown in Fig. 2. Intrinsic camera pa-148

rameters are modeled using a zoom variable in the calibration149

process. This model is then used to estimate the camera pa-150

rameters in the online process. In the online process, several151

known 3D points and natural features are used to estimate the152

image magnification that results from the camera zooming and153

the absolute extrinsic camera parameters. The details of the154

proposed method are described in the following sections.155

3.1. Parameterization of Intrinsic Camera Parameters with Zoom156

Value157

The relationship between the image magnification that re-158

sults from camera zooming and the intrinsic camera parameters159

is calibrated in the offline stage. In general, the perspective pro-160

jection of the pinhole camera model is represented as161

sppp = KKKTTT PPP (1)

where PPP represents the 3D position in the world coordinate sys-162

tem, ppp is the 2D position in the image coordinate system, and s163
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Figure 3: Focal length for each magnification of camera zooming.

represents the depth in the camera coordinate system. KKK and TTT164

represent the matrices of the intrinsic and extrinsic camera pa-165

rameters, respectively. The intrinsic camera parameter matrix166

has the structure167

KKK =

⎡
⎣

fx 0 u
0 fy v
0 0 1

⎤
⎦ (2)

where fx and fy are focal lengths, and u and v are the center168

of projection. In our method, for each image magnification169

resulting from the camera zooming, these four parameters are170

measured in an offline camera calibration process. The intrin-171

sic camera parameters are then modeled by the magnification172

parameter resulting from the camera zooming m. Using this pa-173

rameterization, we can address the intrinsic camera parameter174

change using one parameter.175

KKK (m) =

⎡
⎣

fx (m) 0 u(m)
0 fy (m) v(m)
0 0 1

⎤
⎦ (3)

In our method, third order spline fitting is used to obtain the176

model for each parameter change. Figs. 3 and 4 show the cal-177

ibration results of an intrinsic camera parameter change. The178

points in each figure indicate the actual parameters obtained by179

the camera calibration [25]. Each line indicates the third or-180

der spline fitting result. We can confirm that the focal lengths181

are drastically changed at a large image magnification, which182

results from camera zooming. The accuracy of the geometric183

registration decreases at this magnification in conventional AR184

applications.185

3.2. Energy Function for Online Camera Parameter Estima-186

tion187

In the online stage, the Kanade-Lucas-Tomasi (KLT) fea-188

ture tracker [26] is used and fiducial marker detection is ex-189

ecuted. Camera parameters (translation, rotation, and magnifi-190

cation resulting from camera zooming) are then estimated using191

the information thus obtained. We use the KLT feature tracker192
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Figure 4: Center of projection for each magnification of camera zooming.

because this method can achieve stable feature tracking for im-193

age sequences. In addition, its computational cost is relatively194

low.195

To estimate the intrinsic and extrinsic camera parameters in196

the online stage, we define the new energy function by adding197

the two energy terms to the conventional marker-based method198

to estimate camera parameters. The energy function consists199

of three terms: (1) reprojection errors of the fiducial marker200

Emk; (2) reprojection errors of tracked natural features based201

on epipolar constraint Eep; and (3) the constraint of continuity202

of magnification resulting from camera zooming Ezoom. These203

three terms are automatically balanced using the weights ωmk204

and ωzoom:205

E2 = Eep +ωmkEmk++ωzoomEzoom (4)

Emk is used to estimate absolute extrinsic camera parameters,206

Eep implicitly gives 3D scene structure information, and Ezoom207

gives the temporal constraint for zoom values. The two addi-208

tional terms improve the accuracy of the estimation of the mag-209

nification of the zoom value. In the online process, the camera210

parameters are estimated by minimizing the energy function E.211

These terms are described in detail in the following sections.212

3.3. Emk: Energy Term based on Fiducial Marker213

This energy term is nearly the same as that used in the con-214

ventional camera parameter estimation methods. Reprojection215

errors are calculated from correspondences between the fiducial216

marker corners in an input image and its reprojected points.217

Emk =
4

∑
i=1

(
KKK(m j)TTT jPPPi− ppp′′′i

)2 (5)

where TTT j represents the extrinsic camera parameter matrix com-218

posed of camera rotation and translation and PPPi and ppp′′′i repre-219

sent the 3D position of fiducial marker corners and its detected220

position in the input image, respectively. Unlike in the conven-221

tional methods, in the proposed method, the magnification pa-222

rameter m of the camera zooming exists in the intrinsic camera223

parameter matrix KKK in the j-th frame.224

It should be noted that the accuracy of marker-based esti-225

mation results is unstable when the optical axis of the camera226

is perpendicular to the fiducial marker plane. This instability is227

θ

Optical axis

Normal of fiducial
marker plane

Figure 5: Weight ωmk is calculated according to the angle θ .

caused by the singularity problem in the optimization process.228

For this reason, the weight for this energy term ωmk is calcu-229

lated from the angle θ (Fig. 5) between the optical axis and the230

fiducial marker plane as231

ωmk (θ) =
4

π2 θ 2 +α (6)

where α is a minimal weight for Emk.232

3.4. Eep: Energy Term based on Epipolar Constraint233

Eep is calculated based on the epipolar constraint using nat-234

ural features tracked between a key and a current frame. In our235

method, frames that satisfy the following conditions are stored236

as the key frames.237

1. The distance between the current camera position and the238

camera positions of the previous 10 frames is the maxi-239

mum.240

2. All of the distances between the current camera position241

and key frame positions are greater than the threshold.242

It should be noted that the first frame is stored as the first key243

frame in the online camera parameter estimation process.244

The reprojection errors in term Eep are calculated using nat-245

ural features tracked between a key frame and the input image.246

Fig. 6 shows the geometric relationship between two cameras247

and a corresponding pair of natural features in the input image.248

In the term Eep, the reprojection error is defined as the distance249

between an epipolar line l and a detected natural feature posi-250

tion qqqi in the input image.251

Eep =
1∣∣SSS j
∣∣ ∑

i∈SSS j

d2
i (7)

where SSS represents a set of tracked natural feature points in the252

j-th frame, and di represents the reprojection error for the nat-253

ural feature point i. The epipolar line l can be calculated from254

epipole eee′i and the projected position ppp′i of the natural feature255

position pppi in the key frame. Epipole eee′i and the projected posi-256

tion ppp′i are calculated as257

eee′i = KKK (m j)TTT jPPPkey (8)

ppp′i = KKK (m j)TTT jPPPi (9)
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where PPPkey represents the key frame camera position in the258

world coordinate system. The subscript represents the esti-259

mated camera parameters in the key frame. It should be noted260

that PPPi in Eq. (9) is already transformed into the world co-261

ordinate system via the matrices KKKkey
(
mkey

)
and TTT key. Using262

this notation, we can represent the estimation error for the two263

frames based on the epipolar constraint as the reprojection er-264

ror.265

3.5. Ezoom: Energy Term based on Continuity of Magnification266

of Camera Zooming267

Our study focuses on the camera parameter estimation for268

AR. Therefore, the online camera parameter estimation is ex-269

ecuted sequentially. In this case, the magnification parameter270

resulting from camera zooming within successive frames does271

not change drastically. To use this continuity constraint, we add272

the following energy term to Ezoom:273

Ezoom =
(
m j−1−m j

)2 (10)

With this constraint, a discontinuous change in the zoom value274

is suppressed. It should be noted that the relationship between275

the zoom values and intrinsic camera parameters is not propor-276

tional, as shown in Figs. 3 and 4. These figures show that277

focal lengths ( fx (m) , fy (m)) are drastically changed at a large278

image magnification as a result of the camera zooming. For279

this reason, we should control the weight for this term ωzoom280

adequately. To solve this problem, we employed a weight for281

ωzoom, which depends on fx (m) as282

ωzoom =
1

fx (m j)
(11)

In this term, we only use fx because the change in fx is nearly283

the same as that in fy.284

3.6. Energy Minimization285

To estimate the intrinsic and extrinsic camera parameters,286

the energy function E is minimized using the Levenberg-Marquardt287

algorithm. The M-estimator is employed in this optimization288

process to achieve a robust estimation. In this study, we em-289

ploy the Geman-McClure function ρ .290

ρ (x) =
x2/2

1+ x2 (12)

where x represents the residual. The zoom value m j−1 estimated291

in the previous frame and the extrinsic camera parameters es-292

timated using KKK
(
m j−1

)
are used as initial parameters for the293

optimization process. In this optimization process, the results294

of camera parameter estimation sometimes converge at a local295

minimum. Experimentally, we confirmed that the local mini-296

mum problem occurs along the optical axis of the camera. For297

this reason, to avoid the local minimum problem, the optimiza-298

tion process is executed using three different initial values that299

are generated by adding an offset β to the initial magnification300

value of camera zooming. Finally, the lowest energy value of301

the trial results is chosen, and its estimated camera parameters302

KKK (m j) and TTT j, are adopted as the final result.303

4. Experiment304

To demonstrate the effectiveness of the proposed method,305

we first evaluated the accuracy of the estimated camera param-306

eters in a simulated environment. In this evaluation, the changes307

in the intrinsic camera parameters during camera zooming were308

simulated using the measurement results described in Section309

4.1. Next, we compared the geometric registration results of our310

proposed method with those of the state-of-the-art method [18],311

which can handle camera zooming. The accuracies of the pro-312

posed and previous methods were also qualitatively evaluated313

in the real environment. It should be noted that all input video314

sequences were started at the non-zoom setting and that the off-315

set for the initial value β in the optimization process was set at316

0.1. The value of β was set experientially. In all experiments,317

we used a desktop PC (CPU: Corei7 2.93 GHz, Memory: 4.00318

GB).319

4.1. Camera Calibration Results320

In this experiment, we used a Sony HDR-AX2000 video321

camera, which records 640 × 480 pixel images with an optical322

zoom (1x-20x) and progressive scan at 30 fps. The lens distor-323

tion of this camera is nearly zero (κ1 =−1.4×10−4). Thus, we324

can ignore the lens effect in the following experiments. This325

video camera was used to generate virtual camera motions in326

the quantitative evaluation and acquire actual video sequences327

in the qualitative evaluation. The range of the image magnifica-328

tion resulting from camera zooming is divided into 20 intervals.329

Then, the intrinsic camera parameters for each zoom value are330

obtained using Zhang’s camera calibration method [25]. Figs.331

3 and 4 show the results of the camera calibration. In these fig-332

ures, the lines indicate the spline fitting results. These results333

show that the focal length drastically changes when the zoom334

value is greater than 13. In addition, the center of the projection335

changes cyclically because the lens rotates during zooming. In336

the following experiments, we used the spline fitting results of337

fx(z), fy(z), u(z), and v(z).338

4.2. Quantitative Evaluation in a Simulated Environment339

The accuracy of the estimated intrinsic and extrinsic cam-340

era parameters was quantitatively evaluated in a simulated en-341

vironment. It should be noted that the range of magnification of342
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Figure 7: Part of the camera paths and 3D points in the simulated environment.
The lefthand figure shows the experimental setup for the free camera motion.
The righthand figure shows the experimental setup for the straight camera mo-
tion. The fiducial marker center is located at the origin of the world coordinate
system, and the marker plane is parallel to the grid plane.

zooming was reduced from 1x-20x to 1x-10x. This reduction343

was done because of the difficulty of acquiring ground truth344

data because the 3D points immediately leave the field of view345

and the captured images are greatly blurred by the narrow depth346

of field at large zoom values. In this experiment, the two vir-347

tual camera motions used in the simulated environment were348

acquired using ARToolkit [1] and the video sequences captured349

in the real environment. In this virtual camera motion acquisi-350

tion process, intrinsic camera parameters are fixed at the small-351

est magnification of camera zooming. The differences between352

these motions are as follows.353

• The camera moves freely or straight along the optical axis354

during camera zooming in the simulated environment.355

• The camera travels 2173 mm during free camera motion356

and 1776 mm during straight camera motion.357

In this simulation, 100 3D points were randomly generated in358

the 3D space (500 mm× 500 mm× 500 mm). Then, the corre-359

sponding pairs were obtained by projecting these 3D points into360

virtual cameras. Additionally, because there was no noise in361

the projected points, Gaussian noise was added, with the mean362

equal to zero and a standard deviation of σ = 2.0. Fig. 7 shows363

the geometrical relationships between the 3D points and camera364

motions in the simulated environments.365

4.2.1. Free camera motion366

In this case, the camera moves freely in the simulated envi-367

ronment, which includes a translation, a rotation, and a zoom-368

ing. Figs. 8 and 9 show the results of the estimated intrinsic369

camera parameters ( fx, fy,u,v) and the ground truth value for370

each frame. It should be noted that the previous method [18]371

cannot estimate the centers of the projection. Fig. 9 shows372

the results of the proposed method only. These results confirm373

that the proposed method can estimate the focal length more374

accurately than the previous method. In addition, the proposed375

method can accurately estimate the center of projection.376

Figs. 10 and 11 show the errors for estimated position and377

rotation. The errors for the camera position are measured by378

the Euclidean distance between camera centers, while the er-379

rors for the camera rotation are measured using the same crite-380

ria as those used in [27]. These results confirm that the accuracy381
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Figure 8: Estimation results of focal length for each frame in the case of free
camera motion. (a) The estimation results of the previous method [18]. (b) The
estimation results of the proposed method.

of the estimated extrinsic camera parameters is drastically im-382

proved by the proposed method. This improvement is consid-383

ered a result of the accurate estimation of the intrinsic camera384

parameters. In addition, we can confirm that translation errors385

are strongly dependent on the zoom factor estimation errors.386

Table 1 shows the average errors for each camera param-387

eter. Although the average reprojection error in the previous388

method is small, the errors for each camera parameter are still389

large. The results of Figs. 8, 10, 11, and Table 1 confirm that390

the rotation errors depend on the direction of the optical axis391

and that the translation errors lie along the optical axis because392

the resulting reprojection error is small. This is due to the dif-393

ficulty involved in estimating the parameters using only 2D-3D394

correspondences. In contrast, the average estimation errors for395

each camera parameter decrease in the proposed method. We396

consider that the multiple frame information and the continu-397

ity constraint of the camera zooming were responsible for this398

improvement. However, the processing time of the proposed399

method is longer than that of the previous method. In the pro-400

posed method, the energy minimization process accounts for401

most of the processing time. To avoid the local minimum prob-402

lem, in our method, the minimization process is executed for403

three different initial values. An efficient solver for the en-404

ergy minimization is needed to allow the proposed method to405

be adopted in mobile AR applications.406

4.2.2. Straight camera motion407

In straight camera motion, the camera moves straight along408

the optical axis during camera zooming. In addition, the optical409
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Figure 9: Estimation result of the center of projection for each frame in the case
of free camera motion.

0

5

10

15

20

25

30

0 50 100 150 200 250 300

Po
sit

io
n 

er
ro

r [
m

m
]

Frame number

Proposed method Previous method

Figure 10: Estimated camera position errors for each frame in the case of free
camera motion.

axis is perpendicular to the fiducial marker plane. This con-410

dition cannot be easily handled by the previous method [18].411

Figs. 12 and 13 show the results of the intrinsic camera pa-412

rameter estimation. Figs. 14 and 15 show the errors for the413

estimated position and rotation. Table 2 shows the average er-414

rors for each camera parameter. These results show that the415

proposed method can estimate accurate intrinsic and extrinsic416

camera parameters under this difficult condition. Conversely,417

although the reprojection error is small in the previous method,418

the estimated camera parameters are inaccurate because of the419

difficulty of estimating camera parameters using only 2D-3D420

correspondences.421

4.2.3. Effect of use of the three initial values422

To confirm the effectiveness of the three initial values, we423

executed the proposed method without offset for the initial value.424

In this experiment, the camera parameters were estimated us-425

Table 1: Comparison of accuracy in the case of free camera motion

Method [18] Proposed method
Ave. focal length error [mm] 13.66 2.13
Ave. position error [mm] 7.71 1.1
Ave. rotation error [degree] 2.24 1.67
Ave. reprojection error [pixel] 1.33 0.79
Processing time [s] 0.012 0.05
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Figure 11: Estimated camera rotation errors for each frame in the case of free
camera motion.

ing the same input that was used in the free and straight camera426

motion cases. Fig. 16 shows the results of the focal length esti-427

mation in the case of free and straight camera motions obtained428

using the proposed method without offset for the initial value.429

In this investigation, we concentrate on the estimation result430

of the focal length because the accuracies of the other param-431

eters are dependent on the accuracy of the focal length estima-432

tion, as shown in Sections 4.2.1 and 4.2.2. The results confirm433

that the method cannot track the focal length between frames434

40 and 50 in the case of straight camera motion. In addition,435

compared with the results shown in Figs. 8(b) and 12(b), the436

focal length estimation became unstable. These results show437

that by using the three initial values in the optimization process,438

the local minimum problem can be avoided and a more stable439

camera parameter estimation can be achieved. However, in the440

proposed method, the computational efficiency is decreased by441

the three-fold optimization. To reduce the computational cost442

in the optimization process, efficient initial camera parameter443

prediction is required.444

4.3. Qualitative Evaluation in the Real Environment445

In this experiment, the geometric registration results of the446

proposed method were compared with those of the previous447

method [18]. The camera parameter estimation process was448

executed for two video sequences: one free camera and one449

straight camera motion sequence. In these sequences, the im-450

age magnification resulting from the camera zooming changes451

dynamically.452

Fig. 17 shows the results of the geometric registration, where453

a virtual cube is overlaid on a Rubik’s cube. We can confirm454

that the virtual cube is accurately overlaid using the proposed455

Table 2: Comparison of accuracy in the case of straight camera motion

Method [18] Proposed method
Ave. focal length error [mm] 13.08 0.83
Ave. position error [mm] 6.1 0.46
Ave. rotation error [degree] 1.37 1.31
Ave. reprojection error [pixel] 1.36 0.82
Processing time [s] 0.011 0.05
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Figure 12: Estimation results of focal length for each frame in the case of
straight camera motion. (a) The estimation results of the previous method [18].
(b) The estimation results of the proposed method.

method. In contrast, the results of the previous method involve456

geometric inconsistency. More specifically, there is a large ge-457

ometric inconsistency in the geometric registration results of458

the previous method for straight camera motion (Fig. 17(b)).459

These results show that our method can achieve accurate geo-460

metric registration using estimated camera parameters even in461

such a difficult condition.462

Fig. 18 shows the results of the estimated camera paths. In463

this figure, the frustums represent the estimated camera posi-464

tions and poses. The size of the frustum changes depending on465

the focal length. This figure confirms that the estimated camera466

path of the proposed method is smoother than that of the pre-467

vious method. There is a large jitter in the estimated camera468

path of the previous method. We confirmed that the proposed469

method can estimate the camera path more stably than the pre-470

vious method.471

5. Conclusion472

In this paper, we proposed a method for estimating a cam-473

era pose for environments where the intrinsic camera parame-474

ters change dynamically. To estimate intrinsic camera parame-475

ters during camera zooming, we developed an energy function476

based on epipolar geometry. To achieve accurate camera pa-477

rameter estimation, intrinsic camera parameters at each zoom478

value are calibrated in advance. Then, the intrinsic camera pa-479

rameter changes depending on the zoom values are modeled.480

The effectiveness of the proposed method was demonstrated in481

simulated and real environments. In the current implementa-482
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Figure 13: Estimation results of the center of projection for each frame in the
case of straight camera motion.
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Figure 14: Estimated camera position errors for each frame in the case of
straight camera motion.

tion, our method was applied to a planar scene. However, our483

method can be applied to non-planar scenes by changing the484

2D-3D corresponding pair detection process. This modification485

allows our method to also be effective in natural feature-based486

augmented reality applications. If more than four 2D-3D cor-487

responding pairs are used in our method, the term Emk gives488

a stronger constraint for estimating camera parameters. We489

did not incorporate lens distortion estimation into the current490

version of our method because it can be ignored in most con-491

sumer cameras. However, when wide angle lenses are used, the492

lens distortion must be considered; therefore, in future work,493

lens distortion estimation will be incorporated into the proposed494

method.495
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straight camera motion.
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Figure 17: A virtual cube is overlaid on the Rubik’s cube in each frame. (a) The geometric registration result for free camera motion. (b) The geometric registration
result for straight camera motion. In the top row in each figure, the results of the proposed method are presented for different magnifications as a result of the camera
zooming. In the bottom row, the results obtained using the previous method are shown.
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Figure 18: Estimated camera paths. (a) The estimation result for free camera motion. (b) The estimation result for straight camera motion.
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