
Fast Incremental Indexing with
Effective and Efficient Searching in XML Element Retrieval

Atsushi Keyaki,
Jun Miyazaki

Graduate School of
Information Science

Nara Institute of Science
and Technology

8916-5 Takayama, Ikoma
Nara 630-0192, Japan

{atsushi-ke,
miyazaki}@is.naist.jp

Kenji Hatano
Faculty of Culture and
Information Science
Doshisha University

1-3 Tatara-Miyakodani
Kyotanabe

Kyoto 610-0394, Japan
khatano@mail.doshisha.ac.jp

Goshiro Yamamoto,
Takafumi Taketomi,

Hirokazu Kato
Graduate School of
Information Science

Nara Institute of Science
and Technology

8916-5 Takayama, Ikoma
Nara 630-0192, Japan
{goshiro, takafumi-t,

kato}@is.naist.jp

ABSTRACT
In this paper, we propose methods for fast incremental indexing
with effective and efficient query processing in XML element re-
trieval. The effectiveness of a search system becomes lower if doc-
ument updates are not handled when these occur frequently on the
Web. The search accuracy is also reduced if drastic changes in doc-
ument statistics are not managed. Though it will be important to
enable fast updates of indices, preliminary experiments have shown
that a simple incremental update approach has two problems: some
kinds of statistics are inaccurate, and it takes a long time to update
indices. We therefore propose two methods: one to approximate
term weights accurately with a small number of documents, even
for dynamically changing statistics; and the other to eliminate un-
necessary update targets. Experimental results show that our pro-
posed system can update indices up to 32% faster than the simple
incremental updates while while the search accuracy improved by
4% compared with the simple approach. The proposed methods
can also be fast and accurate in query processing, even if document
statistics change drastically.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]; H.3.3 [Information Stor-
age and Retrieval]

General Terms
EXPERIMENTATION

Keywords
XML information retrieval, incremental updates of indices, accu-
rate global weights, reduction of update cost

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2013 ACM 978-1-4503-1306-3/12/12 ...$15.00.

An information unit in XML element retrieval is not a document
but an element of XML documents. XML element retrieval systems
present elements that contain descriptions satisfying the informa-
tion needs of users who thus do not have to spend time seeking
relevant descriptions in each document. Although existing studies
of XML element retrieval have attained both effectiveness and effi-
ciency in query processing [20], [22], [12], [5], these studies have
not considered document updates.

Web documents are frequently updated; i.e. inserted, deleted,
or modified. In particular, Wikipedia articles are updated 4000 to
8000 times per hour1. Information retrieval systems are expected
to present search results based on the latest content on the Web,
especially as new topics are added to documents. Without handling
updates, a search system cannot find newly inserted documents, and
it ranks documents based on obsolete information, which reduces
the effectiveness. Thus, we add a function for handling document
updates to the existing techniques for XML element retrieval.

The mainstream approach for updating an index is to construct a
new index periodically from scratch while discarding the existing
one. It may take a long time to retrieve updated documents if con-
structing a new index is costly. Incremental updates are required to
shorten this delay.

We believe that this is the first study focused on fast incremental
updates of indices in effective and efficient XML element retrieval
systems. Although Google supports fast incremental updates with
effective and efficient query processing, its approach differs from
ours. Google analyses the link information of Web pages to find
important pages, whereas our study utilizes text information. We
can apply our approach to other structured documents apart from
the Web, even if these do not have link information.

We therefore present a function for incremental updates with
XML element retrieval. Term weights must be calculated during in-
cremental updates. A term weight is calculated with various kinds
of statistics, including global weights that are aggregate statistics
derived from all documents in a document set. Thus, global weights
are difficult to calculate immediately. These statistics were not con-
tained in the indices of past studies, because those studies did not
target index updates. We incorporate these statistics into the pro-
posed indices to enable fast updates. Two problems arise with in-
cremental updates:

1http://www.wikichecker.com/editrate/

<article>

<p>Bill Gates is …</p>

<body>

<sec>Early life …</sec>

<sec>Windows …</sec>

<sec>Books …</sec>

</body>

</article>

<article>

<sec>Steve Jobs …</sec>

<body>

<h2>Business life …</h2>

<sec>Apple computer …</sec>

</body>

</article>

DID:1 DID:2

Figure 1: XML document

• the search accuracy is affected by inaccurate global weights,
and

• it takes a long time to index all terms in all elements.

Concerning the first problem, global weights cannot be calcu-
lated accurately without a sufficient number of documents. We
need a method to approximate global weights accurately with an
insufficient number of documents. Such a method would be es-
pecially useful as new topics are added and document statistics
change drastically. The statistics related to the new topics vary as
the documents are updated and must be recalculated rapidly.

The second problem implies that incremental updates prolong
the indexing time. Moreover, in XML element retrieval, a much
larger number of search targets must be handled in comparison to
the number of documents2. As a result, the cost to index all data is
high. To enable fast updates, we target only the important parts of a
document (elements) with an element filter, and we target important
terms for query processing with a term filter.

Using these techniques, we propose a method for fast incremen-
tal updates of indices with effective and efficient query processing
in XML element retrieval. We evaluated the effectiveness and effi-
ciency of our approaches through experiments with two cases: the
static statistics case in which topics rarely change, and the dynamic
case in which new topics are added frequently.

In the remainder of this paper, Sections 2 and 3 describe the ba-
sic concept of XML element retrieval and the related studies, re-
spectively. Section 4 implements and evaluates a simple system
of extended XML element retrieval for incremental updates of in-
dices. Section 5 discusses the proposed methods that the simple
system applies to solve the problems, and Section 6 discusses the
experimental evaluations. Section 7 concludes this paper.

2. XML ELEMENT RETRIEVAL
In this section, we describe the concepts of XML elements and

queries in XML element retrieval.

2.1 XML Element
We give specific examples in Figures 1–3 to define XML ele-

ments. Figure 1 illustrates XML documents. Each document is
assigned a document identifier (DID). Figure 2 depicts trees ab-
stracted from Figure 1. An XML document can be presented by a
tree structure, which helps to understand the structure of the docu-
ment. Each element is assigned an element identifier (EID), which
is assigned in document order. We can identify an element using its
DID and EID.

A pair of start and end tags represents an XML element node
within an XML tree, and the nested structure of XML elements rep-
2For a certain document set, the index size of the document re-
trieval system is 13 GB, whereas that of the XML element retrieval
system is 89 GB. XML elements are discussed in Section 2.

p

Bill Gates is ...

body

article

sec

Early life ... Windows ... Books ...

sec sec

sec

Steve Jobs ...

body

article

Business life ... Apple computer...

h2 sec

EID:1

EID:2

EID:3

EID:4 EID:5 EID:6

EID:1

EID:2
EID:3

EID:4 EID:5

DID:1
DID:2

Figure 2: XML tree

DID: 1, EID: 1

PE: /article

DID: 1, EID: 2

PE: /article/p

DID: 1, EID: 3

PE: /article/body

DID: 1, EID: 4

PE: /article/body/sec

Books …

Bill Gates is …

Early life …

Windows …

Books …

Early life …

Windows …

Books …

Bill Gates is …

Early life …

Windows …

DID: 1, EID: 5

PE: /article/body/sec

DID:1, EID: 6

PE: /article/body/sec

DID:2, EID: 1

PE: /article

DID:2, EID: 3

PE: /article/body

DID:2, EID: 2

PE: /article/sec

DID:2, EID: 4

PE: /article/body/h2

Steve Jobs …

Business life …

Apple computer…

Steve Jobs …

Business life …

Apple computer…

Business life …

Apple computer…

DID:2, EID: 5

PE: /article/body/sec

Figure 3: XML element

resents ancestor–descendant relationships. Each element in Figure
3 is the text that comprises a set of text nodes within the XML tree
in Figure 2. We describe the path expression (PE) of each element.

Authors add structures to a document: e.g. chapters, sections,
and paragraphs. We utilize these structures to identify the best ma-
terial for satisfying the information needs for users. Some struc-
tures are meaningless, so elements defined by those structures are
inappropriate as search results, and some existing studies [4], [3]
include attempts to eliminate these. Suppose that a user seeks in-
formation from Document 1 about “Early life . . .”, “Windows . . .”,
and “Books · · ·”. XML element retrieval systems try to present the
user Element 3 of Document 1, because that element contains all
of the information that the user needs and no extra information.

2.2 Queries for XML Documents
There are two ways for expressing an information need in a

query: through keywords and through document structure. A query
entirely composed of query keywords is called a content-only (CO)
query, whereas a query composed of pairs of query keywords and a
constraint on the document structure is called a content-and-structure
(CAS) query.

CO queries are used just as in traditional information retrieval
for text documents. Users can submit CO queries even if they do
not know the structures of the documents that are retrieved. In con-
trast, CAS queries utilize one of the most significant features of
structured documents: i.e. document structure. With a CAS query,
a user can obtain specific results with regard to granularity and con-
tent.

We give a specific example of a CO query and a CAS query.
These are expressed in the narrow extended XPath I (NEXI) [23]
query language. A CO query //*[about(., "Windows")]
means that the candidate search results are elements containing
“Windows”. Elements 1, 3, and 5 of Document 1 can be search

results in Figure 3.
A CAS query: //article[about(., "Steve")]//sec

[about(., "Apple")] is more complex. Let us focus on the
first half of the query, //article[about(., "Steve")],
which means that candidates for this part are elements that contain
“Steve” and whose path expressions end with an article tag.
The second half of the query, //sec[about(., "Apple")],
means that candidate search results are elements that contain “Ap-
ple” and whose path expressions end with a sec tag. The search
results are elements that satisfy the latter constraint and whose an-
cestor elements satisfy the former constraint. The only element sat-
isfying the query constraints is Element 5 of Document 1 in Figure
3.

3. RELATED STUDIES
Here we explain effective and efficient XML retrieval. We also

discuss studies focused on updates in search systems.

3.1 Effective and Efficient XML Searches

3.1.1 Effective XML Searches
The most important goal of XML element retrieval is highly ac-

curate searches. The mainstream approach to extracting relevant
elements is as follows: first, calculate a term weight for each ele-
ment by using a term-weighting scheme; next, compute a score for
each element using these term weights.

Term-weighting schemes for XML element retrieval are often
derived from studies on document retrieval. Both of these are com-
posed of three types of factors: local weights that are statistics de-
rived from each document (element); global weights that are statis-
tics derived from all document in a document set; and constant
values (coefficients and parameters). Local weights and constant
values are easy to calculate and refer to because local weights are
computed for a newly inserted element. However, it is difficult to
calculate global weights on demand because the entire document
set must be scanned to compute these.

The most significant difference between document retrieval and
XML element retrieval is the method for computing global weights.
Term-weighting schemes in document retrieval assume that every
document has the same attribute and belongs to the same class.
Thus, global weights are calculated using all documents. However,
in XML element retrieval, elements are assigned to classes. Global
weights are calculated for elements of the same class. There are
different ways to classify elements. One approach is to classify
elements by path expression. In Figure 3, since Elements 4, 5, and
6 of Document 1, and Element 4 of Document 2 all have the same
path expression /article/body/sec, the global weights are
calculated using these elements.

Alternatively, elements with the same tag can be placed in the
same class. Because Elements 4, 5, and 6 of Document 1 and El-
ements 2 and 4 of Document 2 all have the sec tag, the global
weights are calculated using these elements, as depicted in Figure
3. We use classification based on path expression in our system,
because this is reportedly more accurate [18].

There are several kinds of term-weighting schemes for XML el-
ement retrieval; e.g. TF-IPF [10], BM25E [11], and the query like-
lihood model for XML element retrieval [17] (QLMEL). BM25E
is regarded as a more effective term-weighting scheme than TF-
IPF. Actually, most of the top-ranked search systems at INEX use
BM25E [2]. However, no exhaustive comparison between BM25E
and QLMEL has been explored. We therefore examine the poten-
tials of these term-weighting schemes in this article.

BM25E [11] is a probabilistic model. In a term calculation of the
classic term-weighting scheme TF-IPF, statistics on the occurrence

frequencies of terms are utilized. Conversely, BM25E utilizes not
only the statistics but also element length (the number of terms in
an element). The term weight wbm25e(p,e, t) of term t in element e
with path expression p is calculated as follows:

wbm25e(p,e, t) =
(k1 +1)t fe,t

k1((1−b)+b ele
avelp

)+ t fe,t

· log
Np− p fp,t +0.5

p fp,t +0.5

(1)

where t fe,t is the term frequency of term t in element e, p fp,t is
the element frequency of term t in the elements with p, Np is the
number of elements with p, ele is the length of element e, and avelp
is the average length of the elements with p. The parameters k1
and b are set as commonly used values 1.2 and 0.75, respectively.
Moreover, sbm25e(e) is the score of e and is calculated as follows:

sbm25e(e) = ∑
ti∈T

wbm25e(p,e, ti) (2)

where T is a set of query keywords.
Language model techniques have been developed in the fields of

speech recognition and machine translation. Recently, these tech-
niques have been introduced into the field of information retrieval.
In particular, the query likelihood model [13] is well studied and
achieves significant results. This model has been adapted to XML
element retrieval [17]. In the term-weighting scheme, the score of
each element is the product of the occupancy probabilities of the
query keywords as shown in Eq. (6). This means that non-zero val-
ues are computed only for the elements containing all the query
keywords. To avoid this, smoothing techniques are often used.
Smoothing values are computed not with a document (element)
model but with a background language model, which is applied
for an entire document set.

Let wqlm(p,e, t) be a probability that term t is generated in ele-
ment e (i.e. a term weight), and let sqlm(p,e, t) be a score of element
e. These are calculated as follows:

wqlm(p,e, t) = ωP̂mle(t|Me)+(1−ω)P̂mle(t|Mp) (3)

P̂mle(t|Me) =
t fe,t
Np

(4)

P̂mle(t|Mp) =
∑e∈p t fe,t
∑e∈p ele

(5)

where ω is a given parameter, Me is an element model for e, Mp is
a background language model for p.

Moreover, sqlm(e) is the score of e and is calculated as follows:

sqlm(e) = P̂(T |Me) = ∏
t∈T

wqlm(p,e, t) (6)

3.1.2 Efficient XML Searches
Although the most important requirement of XML element re-

trieval is enabling effective searches, fast query processing is also
required by system users.

To attain efficient XML element retrieval, various approaches
have been taken, such as 1) compressing and reducing data to sup-
press the index size to minimize the amount of data scanned in
query processing, and 2) applying top-k algorithms to return search
results quickly. Many top-k searches have been proposed [6]. There
are two conditions for efficient query processing: 1) term weights
are calculated before query processing begins, and 2) terms are
sorted in descending order of weight. This means that we only
need to scan highly ranked terms in query processing. Note that

some query processing methods also utilize an index for a random
scan, which is used to refer to the weight of an arbitrary term in any
element.

Some studies [20], [22] have used term-weighting schemes [11]
for effective searches. Theobald et al. proposed two types of in-
dices and a top-k algorithm for efficient searches [20]. One type is
for scoring an element in query processing, and the other type is
for checking a structural constraint on a query. They also proposed
cost-based query processing, which identifies an effective moment
to check the structural constraints and determines which query key-
word is reasonable to process.

Trotman et al. proposed a low-cost method of data compression
and selection [22].

In these studies, the aim was to retrieve elements satisfying the
information need of a user by retrieving elements from a fixed doc-
ument set; i.e. document updates were not considered.

3.2 Handling Document Updates on the Web
The handling of document updates is especially important in

Web search systems because documents are constantly inserted,
deleted, and modified. When documents are updated, useful search
systems should treat them as search targets immediately. If sys-
tems present search results based on a past snapshot of the Web,
the content of the Web documents may since have changed. Search
systems should reflect the current state of the Web and handle dy-
namically changing Web documents.

Recently, some techniques for handling document updates have
been proposed. Chen et al. [1] tackled this challenge in the field of
information extraction. They reported that a long processing time
is required to apply information extraction techniques to document
collections when document updates occur. As a result, a delay oc-
curs before information extracted from the updated documents is
available. To shorten the delay, they proposed a method for recy-
cling the intermediate results of past snapshots. Neumann et al.
[16] also effectively utilized the information of past snapshots, but
with Resource Description Framework (RDF) data.

Ren et al. [19] preserved not only the latest graph data but also
past snapshots to trace the transition of the graph. Our study is
different from theirs to the extent that we present the information
along with the latest state of the Web.

The aforementioned studies utilized the intermediate results of
past snapshots. Hence, we also utilize those or existing indices.
We incrementally update existing indices when new documents are
inserted. In addition, Web search systems are expected to main-
tain high performance with a low update cost. In the case of text
retrieval, high search accuracy should also be maintained.

There has been no adequate study focused on incremental up-
dates in XML element retrieval with effective and efficient query
processing. Therefore, this is the first study to tackle the problem.
Although some researches have focused on incremental updates of
an inverted index [21], [9], [14], they proposed index data struc-
tures of indices and physical storage methods. Our study differ
from their studies because we introduce a function for incremental
updates of indices for several purposes in XML element retrieval
by proposing an efficient method of data management.

4. SIMPLE EXTENSION FOR INCREMEN-
TAL UPDATES

We propose an XML element retrieval system that can return
appropriate search results even when document updates occur. We
call this system a simple extension system because a function for
incremental updates of indices is extended to general XML element
retrieval systems such as [20] and [22].

We show the architecture of the simple extension system in Fig-

(3) update
index

(2) calculate
term weights

index

query

search
result

(1) extract
elements

Version

list

update list update list

update index

insertion

Query Processing

deletion modification

t
1

0.8
t
2

0.1
t
1

0.4

e
1

e
2

document

d
1

d
1
, e

1
, t

1
, 0.8, …

d
1
, e

1
, t

2
, 0.1, …

d
1
, e

2
, t

1
, 0.4, …

t
1

t
2

Figure 4: Architecture of the simple approach

- Term (DID, EID, term, term weight, Path ID, element length)
- Tag-term (DID, EID, tag, term, term weight, Path ID, element
length)
- RS (DID, EID, term, term wight)
- Path (Path ID, path expression)
- GW-Path-term (Path ID, term, frequency [, values of back-
ground language model for QLMEL])
- GW-Path (Path ID, frequency, total length)
- Term-filter (tag, term, threshold value)

Figure 5: Structure of the indices

ure 4. General XML element retrieval systems have functions for
index construction and query processing. They do not assume that
document updates occur once indices are constructed. In contrast,
the simple extension system has capabilities for document inser-
tion, deletion, and modification. In addition, functions for con-
structing indices and query processing in the simple extension sys-
tem are the same as the functions of the general systems, though
the simple extension system stores global statistics that the general
systems do not. We describe proposed index structures, query pro-
cessing, and document update processing in Sections 4.1, 4.2, and
4.3, respectively.

4.1 Structures of Indices
We show the structures of the proposed indices in Figure 5. In

many existing studies, the term weights stored in the indices are cal-
culated beforehand, and structural constraints can be checked with
these. The proposed indices inherit these capabilities but also con-
tain global weights to calculate a term weight immediately, which
is essential for fast incremental updates.

As in the related studies [20], [22], the structures of the indices
are defined in an RDB format. Primary keys are underlined. The
Term, the Tag-term, the RS, and the Path indices are used for
efficient and effective query processing as in other studies.

In the GW-Path-term and the GW-Path indices, the global
weights are indexed. To calculate a term weight, we utilize local
weights, global weights, and constant values. In Eq. (1), (4), and
(5), t fe,t and ele are local weights that are easy to calculate because
they are derived from each element. Conversely, p fp,t , Np, avelp,
and P̂mle(t|Mp) are global weights that are difficult to calculate im-
mediately because the entire document set must be scanned to com-
pute them. Therefore, we store global weights in these indices for
fast term calculation.

The Term-filter index is used with the term filter, which is
one of the proposed methods. Because this simple approach does
not need the Term-filter index, we discuss it below in Section
5.2.2.

4.2 Top-k Searches
The simple extension system has a function for top-k searches [6]

DID VID

100 ∅

101 2

105 3

108 1

DID EID … VID

103 10

…

0

100 20 0

101 15 2

101 5 1

102 25 0

Version list index

・

・

・

・

・

・

deleted

modified

DID EID … VID

103 10

…

0

101 15 2

102 25 0

search results

・

・

・

Figure 6: the version list and query processing

to enhance its usability in fast query processing. To return search
results, only the top k tuples are retrieved for each term (a pair of
tag and term for CAS queries). The term weights in the tuples
are summed for each element to calculate scores. Furthermore, a
weight in an arbitrary term in any element can be gained with a
random scan when we need to calculate exact scores for search
results. We can attain not only efficient query processing but also
effective query processing with the random scan.

A CO query retrieves the Term index whereas a CAS query re-
trieves the Tag-term sequentially to extract candidate search re-
sults in query processing. Accurate scores are calculated for ele-
ments by a random scan with the RS index. Note that tuples in
the Term index are grouped by term in descending order of term
weight, whereas tuples in the Tag-term index are grouped by pair
of tag and term. When a CAS query contains two or more struc-
tural constraints, the path expressions of elements must be checked
to determine whether these satisfy the query constraints.

4.3 Handling Document Updates

4.3.1 Document Insertion
When a document is inserted, the updating process is conducted

as follows:

(1) extracting elements from the inserted document,

(2) calculating term weights for the elements,

(3) updating indices.

Figure 4 describes each process in detail.
First, the document is parsed and elements are extracted. As a

result, elements e1 and e2 are extracted.
Second, the term weights of t1 and t2 in e1, and t1 in e2 need to

be calculated. Term weights are calculated immediately with the
GW-Path-term and the GW-Path indices.

We only need to store all kinds of global weights in the indices
when using another term-weighting scheme requiring other statis-
tics.

Finally, the Tag-term, the Term, and the RS indices are up-
dated incrementally after the term weights are calculated.

Note that an entire set of documents can be updated at once to
reduce the I/O cost.

4.3.2 Document Deletion
When a document is deleted, there is a high cost to find and

delete all tuples related to the document because the tuples are
spread across the indices. We therefore take another approach to
reduce the cost of the deletion. We manage the DIDs of deleted
documents instead of deleting tuples in the indices. Then, we sim-
ply ignore the tuples of the DIDs in query processing. With this
approach, we can reflect the deletion immediately.

We prepare a version list to manage the deleted documents. The
list contains pairs. Each pair contains the DID of the deleted doc-
ument and the version identifier (VID) with its value marked as
/0. We overwrite the VID as /0 when the DID of the deleted docu-
ment is contained. Specifically, Document 100 in Figure 6 has been
deleted because the VID of Document 100 is /0.

The tuples of documents deleted in the indices are eliminated
when the load average is low. After eliminating the tuples, the DIDs
of the documents deleted in the version list are also eliminated.

4.3.3 Document Modification
The modification process is achieved through the deletion and

insertion processes. In more detail, we delete all tuples related to
the modified document and insert the latest version of the docu-
ment to handle the modification. We also utilize the version list to
manage the version of the document, because there is a high cost to
delete the tuples of a modified document immediately. To enable
fast modification, we only target the tuples of the latest version in
query processing.

Note that the granularity of modification is document granular-
ity, because some problems arise with element granularity. One of
the problems is the size of the version list. The overhead in query
processing become greater when we manage not documents but el-
ements. Another problem is the difficulty in mapping old structure
to new structure when the document structure changes. These are
the reasons that we adopt the document as the granule of modifica-
tion.

The modification process is conducted as follows: first, when a
modification occurs, the version list is scanned to determine whether
the DID of the modified document is contained. If the DID exists
in the version list, 1 is added to the VID; otherwise, the DID of
the modified document and its VID value of 1 are inserted. For
example, Document 101 in Figure 6 has gone through modification
twice because its VID is 2.

Second, the Term, the Tag-term, and the RS indices are up-
dated in the same manner as for document insertion. As shown in
Figure 5, each tuple contains a VID whose value is the same as that
written in the version list. Note that the VID of the first document
inserted is 0.

Finally, each tuple is checked to determine whether the tuple is
valid in query processing based on the VID. The tuple is the latest
when the VID of the tuple is the same as that of the modified docu-
ment in the version list. Moreover, the tuple is also the latest when
the DID of the modified document is not contained in the version
list. In contrast, the tuple is invalid when the VID of the tuple is
smaller than that of the modified document in the version list. We
give a specific example of the validation check in Figure 6. The
DID of the first tuple in the index is 103, and the version list does
not contain that DID. Thus, the first line is valid. The document
of the second tuple has been deleted, because the DID of this tuple
is contained in the version list and its VID is /0. The third tuple is
the latest, because the VID of this tuple is the same as the VID cor-
responding in the version list to the Document 101. Similarly, the
fourth tuple is not the latest, because the VID of this tuple is less
than that of the VID corresponding to the Document 101.

Old versions of tuples in the indices are removed when the load
average is low. In this regard, the VID of the latest version of a tuple
is rewritten as 0, and the DID of the deleted document is removed
from the version list.

4.4 Preliminary Experiments on the Simple Ex-
tension System

We examine the effectiveness and efficiency of incremental up-
dates of indices with the simple approach.

Table 1: Accuracies of term weighting schemes

BM25E QLMEL (ω)
0.6 0.7 0.8 0.9

iP[.01] .540 .500 .502 .514 .490

4.4.1 Test Collection and Implementation Settings
In the experiments, we used the INEX 2008 test collection pro-

vided by the INEX project3. This test collection consists of three
components: (1) the INEX document collection, (2) the INEX top-
ics, and (3) the INEX relevance assessments. The INEX document
collection is an XML Wikipedia corpus based on a snapshot of the
English version of Wikipedia. Approximately 660,000 articles are
in this corpus. The INEX topics include 68 queries, of which 32
are CO queries and 36 are CAS queries. We used all of these in
the experiments. The INEX relevance assessments are the evalua-
tions of the queries to measure the effectiveness of XML element
retrieval systems. In this test collection, at most 1,500 elements are
presented as search results for each query.

In the INEX project, the interpolated precision at the recall level
of 1% (iP[.01]) is used as a formal measure of accuracy. The eval-
uation tool also measures the mean average interpolated precision
(MAiP) as the average precision at 101 recall levels.

The PC that we used for the experiments runs Oracle Enterprise
Linux 5.5. It has four Intel Xeon X7560 CPUs (2.3GHz), 512GB
of memory, and a 4.5TB disk array. The indices were implemented
using BerkeleyDB in GNU C++.

We conducted a preliminary experiment to choose a term-weighting
scheme used in later experiments. We examined the effectiveness
of BM25E and QLMEL to ascertain which term-weighting scheme
is more accurate one.

Table 1 indicates that BM25E is more effective term-weighting
scheme. Hence, we used this in the later experiments.

4.4.2 Experimental Procedure
We define an index before incremental updates take place as an

initial index. We distinguish between documents used to construct
initial indices (initial documents) and documents used to update in-
dices (update documents). Here, we assume that the statistics of the
documents are static, i.e., the statistics of the initial documents and
the update documents are the same. For this purpose, we randomly
sampled documents in order to distinguish between them. In Sec-
tion 6.4, we consider a more complex case in which the statistics of
the documents change dynamically.

All documents are processed through the stop-word and stem-
ming steps before the construction of the initial indices begins. The
procedure is as follows: first, the initial documents are parsed to
calculate term weights and the initial indices are constructed; then,
the update documents are obtained for updating indices incremen-
tally. All data in the GW-Path-term and the GW-Path indices
are scanned in the main memory during updates. Then, the update
documents are parsed and the Term, the Tag-term, and the RS
indices are updated incrementally.

4.4.3 Effects of Incremental Updates
We investigated search accuracies, update efficiency per docu-

ment, and total time of index construction by changing the percent-
age of initial documents within the document set, as indicated in
Table 2. For example, when the ratio is 30%, the initial indices are
constructed using 30% of the documents in the set, and the indices
are updated using the remaining 70% of the documents. When the
ratio of initial documents is 100%, updates of the indices do not

3https://inex.mmci.uni-saarland.de/

take place (no-update).
Table 2 shows that incremental updates reduce search accuracy,

which demonstrates that global weights cannot be computed ac-
curately using only a subset of the documents. To make the incre-
mental update practical, we need to solve the problem of inaccurate
global weights.

The average time for incremental updates is 101.6 ms per docu-
ment when the ratio of initial documents is 50%, whereas the time
required to construct indices from scratch (no-update) is 56.0 ms
per document. This suggests that the update efficiency decreases as
the ratio of initial documents increase. As a result, indexing may
take a long time when we update a number of documents.

5. ACCURATE TERM WEIGHTING AND
FAST UPDATING OF INDICES

Our previous experiments showed that the simple extension sys-
tem has two problems: (1) the search accuracy is reduced by inac-
curate global weights, and (2) the indexing takes longer. Hence, we
should improve the following requirements:

• the system retains search accuracy, and

• the system attains fast updating of indices.

Concerning the first requirement, global weights cannot be cal-
culated accurately without sufficient documents because they orig-
inally reflect the entire document set. To solve this problem, the
simplest approach is to update the global weights as new docu-
ments are inserted. Although the idea of updating global weights
is reasonable, we cannot always have enough newly inserted docu-
ments to calculate accurate global weights. We therefore consider
how to calculate accurate global weights even with a limited num-
ber of documents, and we propose a solution in the next section.

Regarding the second requirement, experiments have shown that
incremental updates lengthen the indexing time. Even if the update
time is not increased, a large number of update targets are handled
in XML element retrieval, although only a few of these appear in
search results. Therefore, it is effective to select the update targets
to reduce the indexing time. We propose an element filter and a
term filter to select update targets from elements and terms, respec-
tively, so that we can identify important elements and terms in a
document. We discuss these filters in Section 5.2.

5.1 Accurate Approximation of Global Weights
We attempt to calculate global weights accurately using a lim-

ited number of documents. Since these are calculated within ele-
ments having the same path expression, we cannot obtain appropri-
ate statistics for a path expression appearing rarely in the document
set. We therefore consider a more effective approach. Specifically,
we integrate path expressions having a similar property to expand
the elements in the same class.

To accomplish this, we utilize the method proposed in our pre-
vious study [7] for integrating path expressions. This integration
method calculates an accurate global weight for a path expression
of few frequencies. The current case is similar to that in the pre-
vious study. In both cases, the global weights of elements with
rare path expressions are not calculated accurately. Therefore, the
integration method should improve the results.

To integrate path expressions, we regard a path expression as
an array of tags and identify the path expressions that are simi-
lar to each other in terms of the appearance order and appearance
frequencies of tags. As a result of the integration, we eliminate
classes that do not contain enough elements to calculate accurate
global weights.

Table 2: The results of the simple approach

ratio of the initial iP[.01] MAiP update time total time of
documents (%) (ms/doc) index construction (h)

10 .411 .130 60.8 11.1
30 .471 .139 76.5 11.9
50 .480 .135 101.6 12.3
70 .497 .140 107.2 13.1
90 .508 .144 205.4 13.3

no-update .540 .143 (56.0) 10.3

1: /article/sec
2: /article/sec/sec

3: /article/sec/emp/sec
4: /article/emp/sec

5: /article/emp/sec/sec

Figure 7: Examples of path expressions

1: /article/sec
2: /article/sec/sec

3: /article/sec/emp/sec
4: /article/emp/sec
5: /article/emp/sec/sec

article

sec

article

sec

emp

Figure 8: An example of classification in ST

In addition, the cost to adopt these methods is small, because
these approaches simply calculate a frequencies and check the or-
der of tags in a path expression. We can ignore the harmful effects
on update efficiency. We now explain three integration methods:

1) set-of-tags method (ST),

2) bag-of-tags method (BT), and

3) order-of-tags method (OT).

5.1.1 Set-of-Tags Method (ST)
Tags in structured documents are separated into two groups. One

represents structural classifications such as article and sec tags.
The other indicates semantics, ideas, attributes, and specific con-
tents such as person, emp, and table tags. These two groups
of tags are supposedly independent in their appearance. This sug-
gests that a combination of tags can generate two or more path ex-
pressions. It is not always appropriate that these path expressions
are placed into different classes. This is why we focus on relaxing
the appearance order and frequencies of tags in path expressions to
integrate similar path expressions.

The set-of-tags (ST) method relaxes both the appearance order
and frequencies of tags in path expressions. Accordingly, we con-
sider only the names of the tags. We classify path expressions com-
posed of the same tag names as members of the same class.

Classification of the path expressions in Figure 7 is shown in
Figure 8. The first two path expressions are in the same class be-
cause they are both composed of article and sec tags, while
the other three path expressions are in the same class because they
are all composed of article, sec, and emp tags. The global
weights of the elements with the first two path expressions are cal-
culated together, and the global weights of the elements with the

article: 1, sec: 1

article: 1, sec: 2

article: 1, sec: 2, emp: 1

article: 1, sec: 1, emp: 1

1: /article/sec

2: /article/sec/sec

3: /article/sec/emp/sec

4: /article/emp/sec

5: /article/emp/sec/sec

Figure 9: An example of classification in BT

1: /article/sec
2: /article/sec/sec

4: /article/emp/sec
5: /article/emp/sec/sec

/article+/sec+

/article+/emp+/sec+

3: /article/sec/emp/sec/article+/sec+/emp+/sec+

Figure 10: An example of classification in OT

other path expressions are calculated together.

5.1.2 Bag-of-Tags Method (BT)
The bag-of-tags (BT) method relaxes only the appearance order

of tags in path expressions. We do not consider the order of tags
from the perspective of the bag-of-words concept.

Classification of the path expressions in Figure 7 is shown in
Figure 9. We first enumerate the names and frequencies of tags in
each path expression to integrate the path expressions classified as
members of the same class. As a result, we integrate the third and
fifth path expressions because both have one article, two sec,
and one emp tags.

5.1.3 Order-of-Tags Method (OT)
The order-of-tags (OT) method relaxes only the appearance fre-

quencies of sequential tags in a path expression. In some path ex-
pressions, a tag appears consecutively two or more times; for ex-
ample, col tags in table of HTML. In this case, even if the fre-
quencies of a tag appearing consecutively are different, we suppose
that the features of a path expression are not much different because
the semantics of each tag are fixed. Therefore, if consecutive tags
are the same, such tags can be aggregated.

Classification of the path expressions in Figure 7 is shown in Fig-
ure 10. Note that sec tags appear consecutively in the second and
fifth path expressions. The first and second path expressions are
integrated, because these have have one or more article tags
followed by one or more sec tags. The fourth and fifth path ex-
pressions are also integrated, these have one or more article
tags followed by one or more emp tags, and one or more sec tags.

5.2 Filters for Reducing Update Cost
We propose two kinds of filters for selecting important elements

and terms to index.
It is obvious that we can reduce update cost with these filters.

However, search accuracy will be reduced if we remove elements
and terms relevant to any query. This would violate the first require-
ment. To avoid a decrease in search accuracy, we should decide
carefully which elements and terms can be removed.

5.2.1 Element Filter
We propose an element filter to remove unnecessary elements.

We previously proposed a method to remove elements that cannot
be the search results of any query [3] and a method to identify the
most appropriate granularity for search results [8]. Those studies
led to the fact that moderate granules are the most appropriate as
search results, because extremely large granules (e.g. whole docu-
ments) tend to contain irrelevant descriptions and extremely small
granules cannot satisfy the information need by themselves. Here-
inafter, we attempt to remove extremely small elements, since iden-
tifying these is easier.

It is essential to define what extremely small elements are. Many
of the Web documents include table-of-contents or reference infor-
mation, which basically consists not of sentences but of keywords.
These descriptions cannot satisfy an information need directly, al-
though they can serve as navigational information. Since one re-
quirement for text summarization is that “information should be
self-contained” [13], we remove any element that cannot be under-
stood by itself.

Based on the discussion above, we define three conditions of
extremely small elements as follows:

(1) elements containing few terms (threshold τel),

(2) elements with deep path expressions (threshold τdepth), and

(3) elements with rare path expressions (threshold τZip f).

Regarding the first condition, the terms in the information other
than the body text including table-of-contents and reference infor-
mation, contain few terms also in the elements. Actually, study
[3] reports that search accuracy improves when short elements are
removed.

In the second condition, elements with deep path expressions
are eliminated. Tables or lists in HTML have a tendency to be
nested deeply. The value of each cell is nonsense without further
information, which is the reason that we regard these elements as
irrelevant.

Regarding the third condition, path expressions that rarely ap-
pear in the document set cannot be calculated accurately, as dis-
cussed above in Section 5.1. We therefore use Zipf’s law [15] to
obtain the threshold of median frequency f , which is computed as
follows:

f =

√
8F1 +1−1

2
(7)

where F1 is number of the path expressions appearing only once in
the document set.

To retain search accuracy, we seek appropriate thresholds to re-
move only irrelevant elements. Preliminary experiments on the el-
ement filter are described in Section 6.2.

Figure 11 illustrates the behavior of the element filter. Suppose
that four elements, e1, e2, e3, and e4, are extracted from inserted
documents. Elements e1, e2, and e4 are eliminated by the element
filter because e1 is too short, the path expression of e2 is too deep,
and the path expression of e4 rarely appears. As a result, only e3 is
chosen as a target.

t
1

:1.0

t
2

: 0.3

t
3

: 0.8

threshold value

: 0.5

- Term

- Tag-term

term

calculat

ion

e
1

e
2

e
4

e
3

- GW-Path-term

- GW-Path

rarely

appearing

path

deep

path

small

terms

e
le
m
e
n
t filte
r

te
rm
 filte
r

- RS

Figure 11: The element filter and the term filter

index

PE 4
PE 5

Version
list

insertion

query
processing

deletion

modifi-
cation

t
1

0.8
t
2

0.1

term filter

element filter

class:1 class:2
path integ.

PE 1
PE 2
PE 3

e
1

e
2

document

d
1

d
1
, e

1
, t

1
, 0.8, …

t
1

(3) update
index

(2) calculate
term weights

(1) extract
elements

Figure 12: Architecture of the proposed system

5.2.2 Term Filter
Although there are many candidate search results, only a few

elements are presented as search results. Therefore, we suppose
that search accuracy is not significantly affected if indices do not
contain terms with low weights.

Based on this idea, we remove the unimportant terms with the
term filter. The thresholds τtw are defined as the term weights of
the nth largest term for each pair of tag and term contained in the
indices. These values are stored in the Term-filter index so
that they can be looked up quickly.

Note that we apply the term filter only to the Term and Tag-term
indices to enable accurate calculation of the score for elements with
the RS index. In addition, we do not apply the filter when the num-
ber of tuples of the pair of tag and term is less than n.

Figure 11 shows an example of how the term filter works. Sup-
pose that τtw is 0.5 and there are three terms to insert into the
Tag-term, the Term, and the RS indices. We use the single
value of τtw for simplicity although τtw differs for each pair of tag
and term. Terms t1 (1.0 > τtw) and t3 (0.8 > τtw) are successfully
indexed with the Term, the Tag-term, and the RS indices because
they are greater than τtw. In contrast, term t2 (0.3 < τtw) is only
indexed with the RS index because it is less than τtw.

5.3 Architecture of the Proposed System
Figure 12 shows the architecture of the proposed system. The

main differences between the simple extension system and the pro-
posed system are that latter integrates path expressions to calcu-
late accurate global weights and utilizes two filters (i.e. the el-
ement filter and the term filter) to reduce the update cost. The
Term-filter index contains the thresholds for the term filter.

The query processing part is the same as in the simple approach.

Table 3: Accuracies with changing τel

τel 25 30 35 40 45 50 55
iP[.01] .526 .530 .540 .527 .526 .532 .527

Table 4: Depth of PEs and the ratio of elements

τdepth 3 4 5 6 7
All .19 .44 .69 .88 .96
Top .69 .89 .97 .99 1.00

When documents are inserted, the global weights in the GW-Path-term
and the GW-Path indices are updated after these are re-calculated
using integrated path expressions.

When updating documents, the proposed system treats only the
elements and the terms selected by the two filters, unlike the simple
extension system.

6. EXPERIMENTAL EVALUATIONS

6.1 Experimental Design
With the simple extension system as the baseline, we investigate

whether integrating path expressions and the applying two filters
is effective for searching accurately and efficient for updating the
indices.

The experimental environment is the same as that used for the
simple extension system. The proposed methods are evaluated us-
ing two document sets; one with static statistics, which means that
its topics rarely change; and the other with dynamic statistics, which
means that new topics are regularly added.

Our proposed approaches admit some variations. There are four
ways of calculating global weights: the default method, which is
classification based on path expression; the set-of-tags method (ST);
the bag-of-tags method (BT), and the order-of-tags method (OT).
There are three parameters in the element filter: the element length
threshold τel , the path depth threshold τdepth, and Zipf’s threshold
τZip f . By examining the effectiveness of each approach, we can
choose the best setting.

In our experimental procedure, we first ran some preliminary ex-
periments to tune the parameters of the element filter and term filter.
Next, with these tuned parameters, we measured the average update
time per document, the index size, and the search accuracy for each
variation of the proposed methods. We used the document set with
static statistics and chose 50% as the ratio of initial documents. Fi-
nally, we confirmed the effectiveness of the proposed methods by
using the document set with dynamic statistics.

6.2 Preliminary Experiments for the Element
Filter and Term Filter

The element filter eliminates the elements that have extremely
short elements, extremely deep path expressions, and rarely appear-
ing path expressions. In this section, we describe some experiments
that we conducted to decide the thresholds.

According to the results listed in Table 3, we set τel to 35; namely,
in terms of search accuracy, the best value for the element-length
threshold is 35.

Table 4 shows the proportion of elements whose depth of path
expressions is less than or equal to τdepth. We measured the pro-
portion for all elements in the test collection and for only those
highly ranked elements obtained in our previous study [8]. There is
a difference between the result for all elements and that for highly
ranked elements. This indicates that we can extract purely use-
ful elements if the depth threshold is set to extract as many highly

Table 5: Effects of the term filter with changing n

n no filter 1500 5000 10000 15000 30000
iP[.01] .480 .477 .483 .490 .462 .484

Table 6: Effects of the proposed approaches

update time disk
run ID (ms/doc) size(GB) iP[.01] MAiP

no-update (56.0) 158 .540 .143
baseline 101.6 158 .480 .123

ST 102.3 160 .525 .120
BT 100.4 158 .489 .115
OT 100.4 159 .492 .115
τel 80.1 130 .518 .122

τdepth 95.1 147 .490 .132
τZip f 92.6 156 .490 .133

elem filter 75.9 124 .506 .123
term filter 84.9 142 .491 .127
two filters 69.1 114 .490 .126
ST_filters 69.5 116 .499 .125

ranked elements as possible and to discard useless elements. We
set τdepth to 6, which ignores any element whose depth is six or
more.

We also investigated the threshold of Zipf’s law. We computed
median frequency of the path expressions by using Eq. 7. We set
τZip f to 166, which ignores any element whose path expression
appears 166 or fewer times in the initial index.

In analogy with the element filter, the term filter eliminates terms
whose weights are below the threshold. We conducted an experi-
ment to decide the threshold for the term filter, as shown in Table 5.
We set n to 10000 or τtw, which ignores the terms whose weights
are less than the 10,000th largest weight of each pair of tag and
term.

6.3 Evaluations of the Document Set with Static
Statistics

We measured the average update time per document, the size of
indices, and the search accuracy with each variation of the proposed
methods, as indicated in Table 6. Note that in the case of no-update,
or constructing a new index from scratch, the average update time
replaces the construction time of the initial indices. Note that el-
ements whose length is less than τel are removed from all results,
even those of no-update.

Compared with the iP[.01] of the simple baseline system, those
of ST, BT, and OT are improved. In particular, ST is the most
effective method for calculating accurate global weights and is 9%
more accurate than the baseline. In addition, the update efficiencies
of these methods are almost equal.

All components of the element filter (i.e. τel , τdepth, and τZip f)
save update cost without reducing search accuracy. The combina-
tion of τel , τdepth, and τZip f is the most effective of all possible
combinations and yields 25% faster updates than the baseline ap-
proach. We used this setting for the element filter in the subsequent
experiments. The term filter also reduces the update cost by 16%
without sacrificing search accuracy compared with the baseline ap-
proach.

Next, we evaluated the combination of the two filters. This ap-
proach performs better than either of single filters in terms of both
update efficiency and search accuracy. The update efficiency is im-
proved by 32%.

Table 7: Category and Query

Category name CQ CW
Technology and applied sciences 18 54

Culture and the arts 20 51
Natural and physical sciences 9 24
Society and social sciences 4 13

History and events 4 11
Philosophy and thinking 3 8

General reference 3 7
Health and fitness 2 7

People and self 3 6
Geography and places 2 5
Mathematics and logic 0 0

Religion and belief systems 0 0

The former experiments showed that the search accuracy im-
proved with the path expression integrating method and the update
efficiency improved with two filters. Then, we combined ST and
the two filters as ST_filters. The search accuracy improved by 4%
compared with the baseline, while the update efficiency improved
by 32%.

In terms of query efficiency, each method takes 1.5 s to 2.0 s per
query. This should be acceptable for users. Finally, we can attain
fast incremental updates of indices with an effective and efficient
search.

6.4 Evaluations of the Document Set with Dy-
namic Statistics

In the previous evaluations, we assumed that the term distribu-
tion and term statistics are static. However, new topics can emerge
suddenly on the Web and may change the term distribution drasti-
cally. Here we artificially assemble a document set with dynamic
statistics to investigate the effectiveness of the proposed methods.

In this set, the initial documents do not include a certain topic but
the updated documents do include the topic. We outline the steps
to evaluate as follows: (1) identify documents on a certain topic,
(2) construct the initial index using the other documents, and (3)
update the indices incrementally using the documents related to the
topic.

We utilized the categories in Wikipedia to judge whether a docu-
ment belongs to a certain topic. Wikipedia has many categories of
various sizes: twelve major categories are listed in Table 7. We sep-
arated 68 queries into the twelve categories. Each query contains
from one to five query keywords, and we obtained a keyword set
for each category. Since the categories “Technology and applied
sciences” (technology for short) and “Culture and the arts” (cul-
ture for short) include relatively large numbers of queries (category
queries, or CQs) and query keywords (category keywords, or CW),
we used these categories in the evaluation. We assigned a docu-
ment to a certain category if the document contains the category
keywords. Note that these category keywords are stemmed.

CW of technology : aircraft, applied, automobil, aviat, bay,
bletchlei, break, car, code, colossu, compani, comput, databas, de-
tect, engin, expert, file, filter, format, graphic, imag, inform, in-
stal, intrus, invent, java, languag, linux, manag, mechan, metadata,
mine, motor, museum, network, nikola, open, oper, park, patent,
program, raid, record, retriev, rotari, secur, social, sourc, storag,
system, tata, tesla, virtual, wireless

CW of culture : acquisit, africa, al, basketbal, berber, bilingu,
childbirth, children, classic, countri, cultur, danc, dish, europ, eu-

ropean, fiction, film, food, franc, game, guitar, hors, instrument,
japanes, keyboard, languag, mahler, museum, nba, north, person,
picasso, player, portugues, produc, region, rule, scienc, scrabbl,
song, spanish, style, symphoni, tap, tast, terracotta, tradit, typic,
vegetarian, vodka, wine

We used the category queries only to examine the effectiveness
of the proposed methods, because we focus on the effects of term
distributions with dynamically changing statistics. In this situation,
we assumed that users expect an effective search to be available as
soon as new topics are added to the collection.

The numbers of documents in the initial indices of technology
and culture are 280,000 and 200,000, respectively. We evaluated
the effects of the changing statistics at four points during the up-
dates. After the updates, the number of indexed documents reached
660,000 for both categories.

Table 8 lists the iP[.01] of each category for the baseline and
ST_filters. For both categories, the proposed methods attained bet-
ter search accuracies than the baseline. In particular, ST_filters
increased the search accuracies rapidly even when the number of
update documents was small.

7. CONCLUSION
In this paper, we proposed methods for fast incremental updates

of indices for XML element retrieval to attain both effectiveness
and efficiency in the query processing. The simple solution for
incremental updates has two problems: (1) decreased search accu-
racy, and (2) increased update time. We solved these problems by
integrating path expressions and utilizing two filters for excluding
unnecessary data.

The experimental evaluations showed that our proposed approaches
are effective and efficient for both static statistics and dynamic
statistics. In particular, a variation of the proposed approaches can
reduce update time by 32% while the search accuracy improved by
4% compared with the simple extension system for static statistics.

8. ACKNOWLEDGMENT
This work was partly supported by Grant-in-Aid for JSPS Fel-

lows and JSPS KAKENHI Grant #22240005, #23500121, and #22700248.

9. REFERENCES
[1] Fei Chen, Xixuan Feng, Christopher Ré, and Min Wang.

Optimizing Statistical Information Extraction Programs Over
Evolving Text. In Proc. of the 28th IEEE ICDE, 2012.

[2] Shlomo Geva, Jaap Kamps, and Andrew Trotman. Advances
in Focused Retrieval. Springer Berlin, 2009.

[3] Kenji Hatano, Hiroko Kinutani, Toshiyuki Amagasa,
Yasuhiro Mori, Masatoshi Yoshikawa, and Shunsuke
Uemura. Analyzing the Properties of XML Fragments
Decomposed from the INEX Document Collection . In
Advances in XML Information Retrieval, volume 3493 of
LNCS, pages 168–182. Springer Berlin, 2005.

[4] Fang Huang, Stuart Watt, David Harper, and Malcolm Clark.
Compact Representations in XML Retrieval. In Formal Proc.
of INEX 2006 Workshop, volume 5631 of LNCS, 2007.

[5] Yu Huang, Ziyang Liu, and Yi Chen. Query Biased Snippet
Generation in XML Search. In Proc. of ACM SIGMOD,
pages 315–326. ACM, 2008.

[6] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A
Survey of Top-k Query Processing Techniques in Relational
Database Systems. ACM Computing Surveys (CSUR),
40:1–58, 2008.

Table 8: Effects on emerging a new topic

of indexed technology (iP[.01]) # of indexed culture (iP[.01])
doc. (×104 doc.) baseline ST_filters doc. (×104 doc.) baseline ST_filters
37 (25% updated) .356 .365 31 (25% updated) .456 .517
47 (50% updated) .363 .392 43 (50% updated) .506 .560
56 (75% updated) .338 .409 54 (75% updated) .501 .585
66 (100% updated) .345 .443 66 (100% updated) .496 .587

[7] Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki. Relaxed
Global Term Weights for XML Element Search. In Formal
Proc. of INEX 2010 Workshop, volume 6932 of LNCS, 2011.

[8] Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki. Result
Reconstruction Approach for More Effective XML Element
Search’. International Journal of Web Information Systems
(IJWIS), 7(4):360–380, 2011.

[9] Nicholas Lester, Justin Zobel, and Hugh E. Williams.
In-Place versus Re-Build versus Re-Merge: Index
Maintenance Strategies for Text Retrieval Systems. In Proc.
of the 27th Australasian conference on Computer Science,
2004.

[10] Fang Liu, Clement Yu, Weiyi Meng, and Abdur Chowdhury.
Effective Keyword search in Relational Databases. In Proc.
of ACM SIGMOD, 2006.

[11] Wei Liu, Stephen Robertson, and Andrew Macfarlane.
Field-Weighted XML Retrieval Based on BM25. In Formal
Proc. of INEX 2005 Workshop, volume 3977 of LNCS, 2006.

[12] Ziyang Liu and Yi Chen. Identifying Meaningful Return
Information for XML Keyword Search. In Proc. of ACM
SIGMOD, pages 329–340. ACM, 2007.

[13] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schutze. Introduction to Information Retrieval, pages
157–159. Cambridge University Press, 2008.

[14] Giorgos Margaritis and Stergios V. Anastasiadis. Low-cost
Management of Inverted Files for Online Full-Text Search.
In Proc. of 18th ACM CIKM, 2009.

[15] M. E. Maron. Automatic Indexing: An Experimental
Inquiry. Journal of the ACM, 8:404–417, 1961.

[16] Thomas Neumann and Gerhard Weikum. xRDF3X: Fast
Querying, High Update Rates, and Consistency for RDF
Databases. In Proc. of 36th VLDB, pages 256–263, 2010.

[17] Paul Ogilvie and Jamie Callan. Parameter Estimation for a
Simple Hierarchical Generative Model for XML Retrieval. In
Formal Proc. of INEX 2005 Workshop, volume 3977 of
LNCS, 2006.

[18] Benjamin Piwowarski and Patrick Gallinari. A Bayesian
Framework for XML Information Retrieval: Searching and
Learning with the INEX Collection. Journal of Information
Retrieval, 8(4):655–681, 2005.

[19] Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold
Cheng. On Querying Historical Evolving Graph Sequences.
In Proc. of the 37th VLDB, 2011.

[20] Martin Theobald, Holger Bast, Debapriyo Majumdar, Ralf
Schenkel, and Gerhard Weikum. TopX: Efficient and
Versatile Top-k Query Processing for Semistructured Data.
The VLDB Journal, 17(1):81–115, 2008.

[21] Anthony Tomasic, Héctor García-Molina, and Kurt Shoens.
Incremental Updates of Inverted Lists for Text Document
Retrieval. In Proc. of ACM SIGMOD, 1994.

[22] Andrew Trotman, Xiang-Fei Jia, and Shlomo Geva. Fast and
Effective Focused Retrieval. In Formal Proc. of INEX 2009
Workshop, volume 6203 of LNCS, 2010.

[23] Andrew Trotman and Börkur Sigurbjörnsson. Narrowed
Extended XPath I (NEXI). In Formal Proc. of INEX 2004
Workshop, volume 3493 of LNCS, 2005.

