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ABSTRACT
We propose and evaluate a method for obtaining more accu-
rate search results in an extensible markup language (XML)
element search, which is a search technique that produces
only the relevant elements or portions of an XML document.
The existing approaches generate a ranked list in descend-
ing order of each XML element's relevance to a search query;
however, these approaches often extract irrelevant XML el-
ements and overlook more relevant elements. To address
these problems, our approach extracts the relevant XML
elements by considering the size of the elements and the re-
lationships between the elements. Next, we score the XML
elements to generate a re�ned ranked list. For scoring, we
rank high in the list the XML elements that are the most
relevant to the user's information needs. In particular, each
XML element is scored using the statistics of its descendant
and ancestor XML elements.
Our experimental evaluations show that the proposed method

outperforms BM25E, a conventional approach, which nei-
ther reconstructs XML elements nor uses descendant and
ancestor statistics.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
PERFORMANCE

Keywords
XML element search, integration and re�nement of XML
elements, statistics of XML elements
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XML is a markup language for structured documents that
has become the de facto format for data exchange. A large
number of XML documents are available on the Web, and we
expect this trend to continue in the future. As such, infor-
mation retrieval techniques for searching XML documents
are very important and necessary in the research �eld of
information retrieval.
An XML element is usually de�ned as part of a larger

XML document. The element is identi�ed by its surrounding
start and end tags. Therefore, XML elements are nested and
have containment relationships with each other, which can
cause overlaps in the XML elements in an XML document1.
Returning search results that contain overlapping XML

elements causes users to read the same text multiple times
if they check all of the elements. It is likely to be incon-
venient for them if they have to read text that has already
been presented. Kazai et al. report that the search accu-
racy2 of a ranked list that contains elements in descending
order of each element's relevance to a search query decreases
if XML element search engines do not remove overlapping
results [7]. This is the reason why most XML element search
engines return a ranked list without overlapping elements.
Typically, search engines should return the most appropri-
ate and informative XML elements, because it is said that
the search results themselves should be understandable [13].
We de�ne the most appropriate element as one that contains
the most relevant text and does not contain irrelevant infor-
mation in the relevant XML document. In related studies,
some XML search engines simply extract the element with
the highest score. This means that the other elements are
unconditionally discarded as candidates of the search result.
Because of this, these kinds of engines do not always return
a useful search result, because, even though the search re-
sult contains relevant text, too many of its small elements do
not make sense in isolation. Moreover, most information re-
trieval techniques focus on parts of documents where query
keywords appear frequently. However, such techniques are
not suited for extracting informative elements that satisfy
the user's information needs.

1Overlapping XML elements are discussed more fully in Sec-
tion 2.2.
2The search accuracy of an XML element search is de�ned
as the ratio of relevant text, while that of a document search
is de�ned as the ratio of relevant documents.



We should judge which XML elements are most appro-
priate; therefore, we consider the text size of the elements
and their containment relationships. We can further identify
and improve the precision of XML elements by using statis-
tics derived from the descendant or ancestor XML elements.
Combining these approaches, we generate a re�ned ranked
list from a simple ranked list and improve the accuracy and
precision of our XML element results.
The rest of this paper is organized as follows. We intro-

duce the basic subject in Section 2 and the related studies in
Section 3, followed by a detailed explanation of our approach
in Section 4. We also report our experimental results and a
discussion of our �ndings in Section 5. Finally, we conclude
our paper in Section 6.

2. PRELIMINARY
In this section, we describe the di�erence between docu-

ment search and element search, the de�nition of elements,
and overlapping elements.

2.1 Comparison of Document Search and El-
ement Search

Here, we explain the di�erence between XML element
search engines and well-used Web search engines. When
many of the Web search engines return a list of relevant
documents, the engines additionally provide users with re-
sult snippets [13], which are summaries of each document,
approximately 50 words in length. Result snippets are gen-
erated by a text extraction technique that extracts the text
that is nearby the query keywords. Search-engine users uti-
lize the result snippets located around the result when de-
ciding which documents are worth browsing. Despite the
fact that many engines rely on result snippets, not all result
snippets help them decide which documents to browse. This
is because result snippets do not consider the context; as a
consequence, some result snippets do not make sense [14].
Based on discussions on the Adobe user forums, the users

of document search engines should browse the actual docu-
ments, because their information needs cannot be satis�ed
with only result snippets.
On the other hand, the main purpose of an XML element

search is to extract the relevant elements from a query and
return them in descending order of their relevancy scores.
XML element search engines can return a list that contains
the relevant parts from a query, while many Web search
engines return a list that contains relevant documents for
a query. Hence, users do not have to spend time seeking
out the relevant parts that satisfy their information needs.
This feature saves users' time and energy during information
retrieval.

2.2 XML Elements and Their Overlaps
We show concrete examples to explain the de�nition and

overlaps of XML elements.
Figure 1 is an example of an XML document, and Figure

2 is a tree that is translated from Figure 1. XML documents
can be expressed as a tree structure, which helps understand
the document structure. To provide better understanding,
we treat an XML document as a tree structure in this pa-
per. In this regard, a pair of start and end tags represents an
XML element node in an XML tree, and a nested structure
of XML elements is expressed as their parent-child relation-
ship. Each element in Figure 3 is text that is composed of

<article><p>Bill Gates is …</p><body><sec>Early life …</sec><sec>Windows …</sec><sec>Books …</sec></body></article>
Figure 1: XML document

p
Bill Gates is ... body

article

sec
Early life ... Windows ... Books ...

sec sec

Figure 2: XML treeelement: articleGill Gates is …Early life …Windows …Books …

element: pGill Gates is …

element: bodyEarly life …Windows …Books …

element: section[1]Early life …
element: section[2]Windows …
element: section[3]Books …

Figure 3: XML element

a set of text nodes of the XML tree in Figure 2. In this
concrete example, the article node, which represents the en-
tire document, has all of the text nodes as its descendant
text nodes, while the body node also has its descendant text
nodes. This demonstrates why there are overlapping XML
elements in XML documents. In short, each XML element
has a containment relationship, i.e., an ancestor-descendant
relationship. Moreover, an ancestor element of an element
is called a larger element, and a descendant element of an
element is called a smaller element. Finally, we explain infor-
mative search results. Suppose that the text nodes �Early
life . . . � and �Windows . . . �, and �Books · · · � satisfy the
user's information needs. In this case, returning the body
node to the user is the most appropriate, and this node con-
sists of the informative search results.

2.3 History of XML Information Retrieval
Some existing studies do not remove overlapping elements

and return a naively ranked list that is sorted in descend-
ing order of the XML elements' scores. We call such a list
a simple ranked list . On the other hand, most studies have
reported damage to search accuracy because of overlapping
search results, [7]: therefore, a ranked list without over-
lapping XML elements is also returned from recent XML
element search engines. We call such a ranked list without
overlaps a non-overlapped ranked list 3. The INitiative for
Evaluation of XML retrieval (INEX) project4 is the largest
ongoing project for XML element search. The INEX project
requires search engines to return a non-overlapped ranked
list as a search result in XML element searches.
The INEX project carries out an XML element search

using document-centric XML documents. The project cre-
ates test collections to measure the search accuracy of XML

3XML element search engines can extract multiple XML
elements if these elements do not overlap with each other.
4http://www.inex.otago.ac.nz/



element searches every year. Generally speaking, search
engine users browse only the top results in the search re-
sults [14]. This means that the most important challenge
is to obtain high accuracy within the top-ranked XML el-
ements. For this reason, the INEX project regards iP[.01],
which means interpolated precision at recall level 1%, as the
formal measure of the evaluation of a search engine. The
INEX project also uses mean average interpolated precision
(MAiP). MAiP is an evaluation measurement that calculates
the average of the (mean) interpolated precision at each re-
call level. The INEX assessment tool divides the recall levels
into 101 levels.
Moreover, the ad hoc track in the INEX project, which

tracks e�ective XML element searches, aims to identify the
most appropriate granular element of a search result, be-
cause the track tries to reveal the capability of an XML el-
ement search. However, document search has been actively
studied in recent years, compared with element search, in
parts of the INEX project. This is because it is di�cult
to identify the most appropriate XML element, and it is
relatively easier to attain more accurate search results by
returning the entire document as an XML element, even
though it contains some irrelevant parts. In fact, many of
the top-ranked search engines in INEX o�cial results are
document search engines [6] over the years. However, one of
our goals is to return the most appropriate XML element in
one XML document in order to save users' time and e�ort.
Therefore, we attempt to attain accurate searches with an
XML element search.

3. RELATED STUDIES
There are two types of XML documents: (1) data-centric,

which mainly contain single or compound terms in their
text nodes, and (2) document-centric, which tend to contain
one or more sentences in their text nodes [2]. Although we
are primarily interested in search techniques for document-
centric XML documents, information on data-centric XML
documents will also be useful. Hence, the following subsec-
tions describe the existing studies related to both types of
XML documents.

3.1 Data-centric XML
Data-centric XML documents generally describe only one

term in their text nodes. Therefore, studies investigating
data-centric XML primarily focus on searching query key-
words. The existing research e�orts to attain e�cient XML
element searches usually utilize the lowest common ances-
tor (LCA) approach [17]. As a part of this approach, the
LCA itself may originate as the top-level common ancestor
of arbitrary nodes in an XML tree; however, it is gener-
ally de�ned as the deepest node containing all of the query
keywords in its descendants. Research involving LCA and
XML elements shows signi�cant results related to efficient
XML search; however, such techniques do not perform well
in the context of accurate XML searches. In other words,
the retrieval accuracy of XML search engines decreases when
we use LCAs as the most appropriate XML elements for a
given query [12].
To address this problem, research e�orts have also tried to

identify and extract more relevant XML elements from the
sub-tree whose root node is an LCA. XSeek [12] is one such
solution that produces a meaningful LCA (MLCA), which
classi�es and analyzes XML tags by using XML schema and

the positions of the query keywords. In the case of XSeek,
the nodes related to a query are selected and extracted in
the order of their relevance to a query. Another approach,
eXtract [5], is an expansion of MLCA and infers a user's
search purpose by analyzing queries. In eXtract, queries are
classi�ed into two cases: (1) extracting an explicit search
target, and (2) extracting the neighbors of the search target.
From the results of the studies, identifying the most ap-

propriate XML element is very di�cult, yet important, for
XML element search. The purpose of the approaches in
these studies is similar to ours to return the best results.
However, our method returns not only the LCA, but also
any node, because we do not think that the LCA condition
is enough for the most appropriate XML element. Moreover,
we do not need to utilize foreign information such as XML
schema, because we try to identify the appropriate element
by using the relationships between the elements.

3.2 Document-centric XML
Because most document-centric XML documents contain

one or more sentences in their text nodes, the existing ap-
proaches for searching document-centric XML documents
focus on an effectivesearch. In other words, the key objec-
tive is to rank the more relevant XML elements higher in
the result list. Therefore, conventional information retrieval
techniques are often utilized. Another approach is to re-
�ne the result list, for example, by removing insigni�cant
elements or by reducing their scores.
Scoring methods for XML element search are often derived

from the ones used in document search. For example, TF-
IPF [3], a popular scoring method for XML element search,
is an XPath5-based scoring method that extends the well-
known TF-IDF [16] approach for document search. Another
popular approach for XML element search is BM25E [11],
which is based on Okapi's BM25 [15] scoring method for
document search.
Although these approaches have been successful, a gap be-

tween XML element search and document search remains.
The goal of XML element search is to extract the relevant
part of an XML document directly, whereas that of doc-
ument search is to simply �nd relevant documents. Ex-
tracting relevant XML elements for a given query is simi-
lar to generating result snippets in a traditional document
search. Result snippets are generated by using information
extraction techniques. Because both XML elements and re-
sult snippets present useful information to users, such infor-
mation extraction techniques can be applied to our scoring
method.
Manning et al. noted that result snippets should have

useful information and be maximally informative to a query
[13]. To satisfy such requirements, we consider statistics
calculated by query conditions [8]. Such statistics consist
of two components: (1) the ratio of XML elements con-
taining query keywords among XML elements satisfying the
constraints of the structure of the given query, and (2) the
number of query keywords in each XML element. In this
paper, we denote (1) as the query structure score (QS) and
(2) as the query keyword score (QK). In our previous studies
[8, 9], our experiments showed that such methods are more
e�ective than the approaches that do not consider query
statistics. We also found that the length of the retrieved
XML elements increases when we use these statistics.

5http://www.w3c.org/TR/xpath
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Figure 4: Overview of our proposed method

As mentioned above, removing useless or low-scoring ele-
ments is also e�ective. Although every granularity of XML
elements should be treated as search targets, the e�ective-
ness of the results decreases sharply if a search engine re-
turns non-informative XML elements. Extremely small XML
elements are often not suitable for search results; Hatano et
al. noted that when such meaningless XML elements are re-
moved, the search accuracy improves [4]. Furthermore, our
previous study suggests that large XML elements are also
inappropriate for search results [9]. Therefore, we should
consider the length of the XML elements.

4. SEARCHING FOR XML ELEMENTS
Because users tend to browse only the top search results,

we believe it is crucial to attain highly accurate top-ranked
results. Similarly, INEX evaluates the precision of the rele-
vant XML elements at a lower recall level.
Search engines should return the smallest-possible XML

elements for the given query; however, recently, document
search has been regarded as more e�ective than XML ele-
ment search (as demonstrated by INEX). We believe that
XML element search enables users to save time and energy
in their information retrieval tasks and could be very conve-
nient. Therefore, we aim to propose a method to �nd XML
element search results whose length is appropriate.
In our approach, we show a refined ranked list , which is

composed of the relevant and informative XML elements. As
shown in Figure 4, an overview of our method is as follows:

(1) We �rst score each XML element by using a scoring
method to obtain a simple ranked list.

(2) We extract the XML elements from a simple ranked
list and generate a set of relevant XML elements by
considering the limitations of the XML element length
and the reconstruction of the XML elements.

(3) To present a re�ned ranked list, we rank the XML ele-
ments extracted from Step (2); we re-rank and remove
the XML elements in the simple ranked list and incor-
porate them into the re�ned ranked list.

Hereafter, we denote the set of relevant XML elements gen-
erated in Step (2) as the Set of Integrated XML Elements(SIXE).

4.1 Selecting an Effective Scoring Method
Our method starts with a simple ranked list. Therefore,

the search accuracy of the proposed method depends on the
quality of the given list. Selecting a suitable scoring method
for an XML element search is the key to acquiring a reliable
simple ranked list.
We assume the following two conditions:

• A simple ranked list is highly accurate in terms of its
MAiP.

• A simple ranked list contains XML elements of varying
lengths.

With regard to the �rst condition, a simple ranked list
with high MAiP contains many relevant elements, regard-
less of whether or not it is ranked in the appropriate order.
Therefore, we need to utilize a method with high MAiP.
With regard to the second condition, we want a simple

ranked list that is composed of elements of varying lengths,
i.e., from small-length elements to large-length elements, be-
cause the most appropriate parts in the XML document are
not speci�c granular elements. In other words, the appro-
priate granularity di�ers from document to document. Be-
sides, we cannot extract the appropriate granular elements
if a simple ranked list contains only speci�c granular ele-
ments. Thus, we assume that a simple ranked list should
contain XML elements of varying lengths.
To examine which list satis�es the condition, we utilize the

notion that there is a relationship between the granularity
and the text size of an element. Note that we consider the
ratio of the text size of an element to the granularity of
the element. In this case, the standard deviation becomes
large if a simple ranked list satis�es the condition. From the
above discussion, we will explore the standard deviation for
the second condition.
While we try to generate a simple ranked list that contains

XML elements of varying lengths, Kamps et al. noted that
large-sized XML elements tend to be more e�ective [6] com-
pared with middle-sized or small-sized ones; however, prob-
lems can occur while extracting such large-sized elements.
Consider an XML document in which several relevant ele-
ments exist. Using the tree structure shown in Figure 4, we
consider the sub-trees with the root nodes d and h to be the
relevant elements. When we extract a sub-tree that contains
all of the relevant elements, it might also include numerous
irrelevant elements. For example, if we choose a sub-tree
with root node a, it contains numerous irrelevant elements,
including c and g. If the scoring method used gives a higher
score to large-sized XML elements, result a may rank higher
than d and h. To solve this problem, we should extract mul-
tiple relevant XML elements from the XML document. In
particular, we need to extract di�erently sized XML ele-
ments in order to determine the appropriate granularity of
XML elements. Given this approach, we focus on MAiP and
the length of the retrieved XML elements. We performed
a preliminary experiment, as described in Section 5.2.1, to
verify whether or not our assumption is true.

4.2 Generating a Set of Integrated XML Ele-
ments



To generate an SIXE, we extract the relevant XML ele-
ments from the simple ranked list generated in Step (1) of
our method. As discussed in Section 4.1, large XML ele-
ments might contain irrelevant elements and decrease the
search accuracy. Therefore, we extract multiple relevant
XML elements from an XML document, as long as their
sizes are properly restricted.
One baseline approach for generating a non-overlapped

ranked list of XML elements is to repeatedly extract the
XML elements from a simple ranked list in descending order
of their rank, unless an overlap occurs. The overlapped XML
elements are simply discarded and ignored.
This operation continues as long as either a candidate of

the XML elements remains in the search results or the num-
ber of extracted XML elements reaches a prede�ned upper
limit6.
On the other hand, we aim to recon�gure XML elements

in a simple ranked list to produce results that are better
than those of the established baseline. As noted in Section
3.2, we should consider how to identify and extract XML
elements of appropriate lengths in order to attain a more
accurate XML element search. We should also consider how
to handle overlapping results, which we ignored in the base-
line approach.
From the above discussion, we derive the following re-

quirements:

Requirement 1:
Because traditional search results include several large
XML elements, we should impose an extraction limit
on the element size.

Requirement 2:
The extracted XML elements are appropriately abbre-
viated and reconstructed to resolve the overlap prob-
lem.

4.2.1 Extraction Limit
To satisfy Requirement 1, we need to limit the size of the

extracted XML elements to an extraction limit (EL). Large-
sized elements tend to contain more kinds of contents, which
means that such elements may have parts that are irrelevant
to users' information needs. Thus, we suppose that the text
size of the relevant parts in an XML document is lesser than
a certain value. We limit the text size of the extracted XML
elements for each XML document. To set the limit, we con-
sider two approaches: (1) the value of the limit is dependent
on the text size of each document, and (2) the value of the
limit is independent of the text size of each document. In
approach (1), the document-size-dependent condition, we
assume that the relevant parts can be represented as a cer-
tain ratio of each XML document size. Accordingly, we limit
the extracted text size for each XML document by de�ning
EL of an XML document D as follows:

ELD = α · |D| (1)

where |D| is the size of the XML document D, and α (0 ≤
α ≤ 1) is the ratio of the size of the relevant element.
In approach (2), the document-size-independent condi-

tion, there may be XML documents of varying lengths, i.e.,
there are both large-sized documents and small-sized doc-
uments. In this situation, EL derived from approach (1)
6In our experimentation, we extracted 1,500 or fewer XML
elements for each query.
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Figure 5: Example of overwriteelements
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Figure 6: Overview of Bottom-Up scoring

could be too small a threshold for informative search results
if there are extremely small-sized XML documents. Hence,
we set EL as a constant value in approach (2) . We de�ne
EL as follows:

ELD = β (2)

where β is the parameter of the text size, which is the max-
imum number of relevant parts in an XML document.
Given this de�nition, we extract the XML elements from

a simple ranked list when the text size of the XML elements
in the SIXE is less than EL. This process repeats until the
size exceeds EL.

4.2.2 Reconstructing Elements
To satisfy Requirement 2, we need to arrange the ex-

tracted XML elements such that the SIXE contains useful
search results. To generate a non-overlapped ranked list for
the baseline approach, we simply eliminate the overlapping
XML elements. This may prevent us from extracting the
relevant XML elements. For example, in Figure 5, we as-
sume that the XML element rooted at node c is the most
relevant one in the tree; however, we cannot extract c if we
have already extracted d.
To address this problem, we search for larger XML el-

ements and overwrite them. As a result, these relevant
elements are all contained in the SIXE, while the existing
approaches extract the elements with the higher score. As
these overwrite operations are applied, the XML element
lengths in the SIXE increase; therefore, the overwrite opera-
tion is executed only when Requirement 1 is satis�ed.
Again, consider Figure 5. Suppose that c has been ex-

tracted. If a is extracted, a overwrites c, because it is larger
than c. Furthermore, we discard d, because it is smaller
than c.

4.3 Generating a Refined Ranked List
After generating an SIXE, we score each XML element in

the SIXE and �nally generate a re�ned ranked list. In this
process, we aim to obtain informative XML elements for the
higher-ranked results. The simplest way to score these XML
elements is to use the initial score, which is used in Step (1)
of our method. Unless noted otherwise, we use the initial
score in the remainder of this paper.



In the following subsections, we propose two scoring meth-
ods for generating a re�ned ranked list: (1) bottom-upscor-
ing, which utilizes the statistics of the descendant XML el-
ements in order to score an ancestor XML element, and (2)
top-downscoring, which utilizes the statistics of an ancestor
XML element in order to score the descendant XML ele-
ments.

4.3.1 Bottom-Up Scoring
The overwrite operation introduced in Section 4.2.2 is ex-

ecuted when overlaps exist in the SIXE. In the overwrite
operation, an ancestor XML element is extracted in place of
its descendants. The ancestor should be ranked lower in a
simple ranked list as compared to its descendants, implying
that the re�ned ranked list also treats the ancestor XML
element as a lower rank if the initial scores are used. In
other words, a descendant element that was originally pro-
posed earlier can be proposed later as a part of the ancestor
element. We show a concrete example in Figures 5 and 6.
When we generate a non-overlapped ranked list with the
proposed approach, we �rst extract d and b. Next, we ex-
tract c and remove d from the list because of overwriting. As
a consequence, the text nodes in c are proposed as a search
result after the text nodes in b are proposed. Regarding the
text node in d, it should be proposed before the text node
in b is proposed. However, the proposed order of these text
nodes is reversed as a result of overwriting. We think that
this may damage the search accuracy. Therefore, we de�ne
a scoring method in which an element has elements with a
higher score among its descendants as a bottom-up scoring
method (BU).
When we calculate the BU score of an XML element, we

should consider the statistics of its descendant elements.
Conversely, it is not appropriate that XML elements with
low scores are ranked high. Therefore, we must integrate
these initial scores properly. To re-score a descendant ele-
ment with the statistics of its ancestor element, we consider
two approaches: (1) integrating the scores of the ancestor
element and the descendant element by a constant fraction,
and (2) integrating the score by a ratio of the lengths of
the ancestor XML element and its descendants. Further-
more, we also consider an approach which is a mixture of
the former approaches, that is, (3) integrating the scores by
a constant ratio after they are re-scored with a ratio of the
length of the two elements.
Here, we discuss how to calculate BU by (1), a constant

ratio. Let fa be an ancestor XML element and fd be the
descendant element with the highest score. We de�ne the
bottom-up (BU) scoring function as:

sBU (fa) = γ · s(fd) + (1− γ) · s(fa) (3)

where γ(0 ≤ γ ≤ 1) is the ratio of the e�ects on an ancestor
element.
Next, we denote the approach for (2). Portions of the

text nodes in an ancestor XML element are composed of
descendant XML elements; the scores of the text nodes in
these descendants a�ect those in the ancestors. Therefore,
the BU score should be calculated using the initial score, as
well as the ratio of the lengths of the ancestor XML element
and that of its descendants:

sBU (fa) =
1

2

|fd|
|fa|

· s(fd) +
1

2

|fa| − |fd|
|fa|

· s(fa) (4)

where |fd| is the length of fd, fa is the length of fa, sBU (fa)
is the bottom-up score of fa, s(fa) is the initial score of fa,
and s(fd) is the initial score of fd. Note that both initial
scores are divided by two to adjust the weight.
Finally, we present an equation to calculate the BU score

with approach (3), which is a mixture of approaches (1) and
(2):

sBU (fa) = γ
|fd|
|fa|

· s(fd) + (1− γ)
|fa| − |fd|

|fa|
· s(fa) (5)

Note that Equation 4 is equal to Equation 5 when γ = 0.5.
We did some experiments to explore the best approach and
its parameter of γ in Section 5.4.1.

4.3.2 Top-Down Scoring
Because query keywords may have numerous meanings,

it is often di�cult to identify a proper one. One solution
is to consider the co-occurrence of query keywords. If an
XML element contains several distinct query keywords in its
text nodes, we can assume that the XML element is closely
related to the meaning of the given query keywords. In our
previous study [8], we obtained informative XML elements
by considering the number of distinct query keywords in
each XML element.
The larger XML elements contain more query keywords,

indicating that larger XML elements tend to be ranked higher.
In other words, we might overlook smaller XML elements,
even if they are informative. To cope with this problem, we
propose a scoring method that is independent of the XML
element size.
XML elements contain numerous distinct query keywords

and are identi�ed as informative. The descendant XML ele-
ments of these informative elements should also be informa-
tive. Therefore, we consider top-down scoring method (TD)
by calculating the ratio of the number of distinct query key-
words contained in an XML element to that of its top-level
ancestor, i.e., the entire document.
Let f be a scored XML element and Df be an XML docu-

ment associated with f . We de�ne the top-down(TD) scoring
function as

sTD(f) = s(f) · count(Df ) (6)

where s(f) is the initial score of f , and count(Df ) is the
number of distinct query keywords in Df .
The two methods BU and TD can be integrated. We call

this mixture-scoring method BU-TD. We calculate the BU
score �rst and then re-score with TD, because the BUmethod
occurs with overwriting.

4.4 Example of Generating SIXE and Refined
Ranked List

In summary, we illustrate an example of generating a part
of an SIXE in which the document ID is 1,000 and its cor-
responding re�ned ranked list uses BU scoring. Figure 7
provides a graphical view of this example. Note that we use
Equation 4 to calculate the BU score.
Suppose that α = 1

3
, and |D1000| = 300. Then, EL1000 =

α · |D1000| = 100. Next, we introduce τ1000, which is the
total length of the extracted XML elements from document
ID 1,000.
We �rst obtain a simple ranked list that is calculated in

Step (1). The obtained XML elements are shown in the left
table of Figure 7. For the sake of simplicity, we assume that
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1000τ ={2, 3, 4, 31, 32, 33} = 951000τ
Figure 7: Example of generating a re�ned ranked list for an
XML document

the list contains only the XML elements whose document
ID is 1,000.
We extract the XML element with the highest score, which

is node k, from the simple ranked list. Because the text
length of k is 40 (< EL1000), k is extracted. This extrac-
tion process continues, because τ1000, which contains text
node 33, is less than EL1000. Therefore, i is selected next,
because i has the second-highest score in the simple ranked
list. Thus, i is extracted, because τ1000, which contains text
nodes 31 and 33, equals 50 (< EL1000). Node h is the next
candidate to be extracted. Because i and k are the descen-
dants of h, they are overwritten by h. In particular, i and
k are removed from the SIXEand h is added. At this point,
τ1000 becomes 70, which is still less than EL1000.
Next, bottom-upscoring is applied. Function (2) is used to

score node h(sBU (h) =
40
70

· 0.887 + 70−30
70

· 0.702 = 0.808).
Following Figure 7 further, d is also extracted. Nodes b

and c fail to be extracted, because τ1000 exceeds EL1000. In
the end, the SIXE is formed by nodes d and h.
Finally, the re�ned ranked list is constructed by adding

the scores calculated via bottom-upscoring into the SIXE. In
the same manner, we generate the complete SIXE for all of
the XML documents and construct the �nal re�ned ranked
list in the descending order of their scores.

5. EXPERIMENTAL EVALUATION

5.1 INEX Test Collections
We performed some experiments using two test collec-

tions: the INEX 2008 test collection and the INEX 2010
test collection [6, 1].
The INEX test collections consist of three components:

(1) the INEX document collection, (2) the INEX topics, and
(3) the INEX relevance assessments. The INEX document
collection is a Wikipedia XML corpus based on a snapshot
of Wikipedia in English. The INEX 2008 test collection
collected articles in early 2006, while the INEX 2010 test
collection collected articles in late 2008.
The INEX topics include 68 queries. We use all of the top-

ics in the experiments, except for an experiment described in

Section 5.5. Each query is represented as narrowed-extended
XPath I (NEXI) [18].
The INEX relevance assessments are evaluation tools for

XML element search. Using the INEX relevance assess-
ments, an XML search engine can be evaluated on the basis
of some evaluation measures by inputting a ranked list into
the evaluation tools. We use this in our experimental eval-
uation. Although the o�cial measure for the focused task
in an ad hoc track is iP[.01], we also show MAiP in order to
reveal the overall e�ectiveness of our proposed method.

5.2 Preliminary Experiments
Before evaluating the search accuracy of an SIXE, we should

choose the scoring method of the initial search in Section
4.1, and also set the parameters α and β for EL in Section
4.2.1. In the next sections, we perform preliminary experi-
ments to �nd the best scoring method of the initial search
and the best parameters with the INEX 2008 test collection.
We use the same scoring methods and parameters with the
experiments of the INEX 2010 test collection.

5.2.1 Preliminary Experiments for Scoring Method
of Initial Search

In Section 4.1, we assumed that a simple ranked list that
is suitable for SIXEhas two conditions: (1) a simple ranked
list is highly accurate in terms of its MAiP, and (2) a simple
ranked list contains many sizes of XML elements. Accord-
ingly, we performed two preliminary experiments to reveal
the most suitable scoring method and to evaluate whether
or not our assumption is true. In the former experiment, we
compared the search accuracy of the following two scoring
methods: the normalized TF-IPF [10] and BM25E [11]. Be-
cause BM25E requires a weight to be assigned to each tag,
we simply set the weight of all tags to 1. The parameters
for BM25E are tuned with the INEX 2008 test collection
(k1 = 2.5, b = 0.857) and used for both test collections.
Table 8 shows that both MAiP and the standard deviation

of BM25E are higher than those of the normalized TF-IPF.
Thereby, BM25E should be a more suitable scoring method
for our method SIXE, if our assumption is valid. To con�rm
it, we apply SIXE to BM25E and the normalized TF-IPF.
The result of the experiment is illustrated in Figure 8. The
�gure shows that the iP[.01] of BM25E (SIXE) is higher than
that of the normalized TF-IPF (SIXE), and the improvement
rate between each scoring method and SIXEis also higher in
BM25E. This suggested that the scoring method returning
variously sized XML elements is suitable for our goal, be-
cause such a scoring method can return a more appropriate
granularity of XML elements when an overwrite operation
runs. Therefore, we conclude that the length of the XML
elements in a simple ranked list a�ects the search accuracy
of SIXE. Note that we use BM25E as a scoring method for
the initial search in the following experiments.

5.2.2 Preliminary Experiments for EL
We performed other preliminary experiments to determine

the parameter EL, as described in Section 4.2.1, before eval-
uating our method. First, we performed experiments to eval-
uate the e�ectiveness of EL on the document-size-dependent
condition, which assumes that the ratio of the relevant parts

7The weight of term j in an element i is calculated as

follows:
(k1+1)tfi,j

k1((1−b)+b el
avel

)+tfi,j
log N−dfi+0.5

dfi+0.5
[11].



Table 1: Standard deviation and e�ect of SIXE
BM25E normalized TF-IPF

MAiP .1679 .1399

Standard deviation 1.41× 10−3 1.30× 10−3

00.10.20.30.40.50.60.70.80.91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
precision

recall

BM25EBM25E (SIXF)normalized TF-IPFnormalized TF-IPF (SIXF)

iP[.01] retrievedsize (bytes)BM25E .613 1.30×108BM25E (SIXF) .663 1.47×108n-TF-IPF .610 1.58×108n-TF-IPF (SIXF) .616 1.90×108

Figure 8: Comparison of scoring methods

in an XML document is lower than a certain value. Because
EL depends on α, we evaluate it with iP[.01] and MAiP by
changing α from 0.1 to 1 by steps of 0.1 in the experiment.
Table 2 shows iP[.01] and MAiP at α. In this regard, α is
the ratio of the relevant parts in an XML document. The
experiment shows that the best value of α is 1.0, because
iP[.01] and MAiP are the best. This fact indicates that a
size limitation on the document-size-dependent condition is
not appropriate. Moreover, the result also shows that some
XML documents should be returned as a whole document.
We subsequently performed a preliminary experiment to

explore the search accuracy of EL on the document-size-
independent condition, which assumes that the relevant text
in an XML element is lower than a constant value. Table 3
shows iP[.01] and MAiP at β. In this regard, β is the text
size of the relevant parts in an XML document. It shows that
iP[.01] is the highest when β = 1, 000. From this result, we
use EL on the document-size-independent condition with
β = 1, 000.

5.3 Evaluation of SIXE
As we discussed in Section 5.2.2, the reconstruction of

XML elements is very e�ective for XML element search. We
conducted experiments to compare our method, SIXE, with
the aforementioned baseline approach. Figure 9 shows that

Table 2: iP[.01] at each α
α 0.1 0.2 0.3 0.4 0.5

iP[.01] .447 .548 .626 .605 .595
MAiP .0291 .0505 .0768 .0950 .108

α 0.6 0.7 0.8 0.9 1.0
iP[.01] .603 .601 .609 .600 .662
MAiP .123 .132 .138 .140 .237

Table 3: iP[.01] at each β
β 100 200 300 400 500 600 700

iP[.01] .482 .536 .595 .629 .649 .648 .649

β 800 900 1000 2000 3000 4000 5000
iP[.01] .655 .656 .663 .659 .659 .660 .661

00.10.20.30.40.50.60.70.80.91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
precision

recall

SIXE (2008)baseline (2008)SIXE (2010)baseline (2010)

iP[.01] retrievedsize (bytes)SIXE (2008) .663 1.47×108baseline (2008) .613 1.30×108SIXE (2010) .422 1.76×108baseline (2010) .382 3.75×108

Figure 9: Comparison of our reconstruction method versus
the baseline

all of the interpolated precisions at each recall level of SIXE
(2008) are higher than those of the baseline (2008). iP[.01]
of SIXE(2008) is improved by 7% compared with that of the
baseline (2008).
Next, we discuss the result related to the INEX 2010 test

collection. The interpolated precisions at lower recall levels
including iP[.01] of SIXE (2010) are higher than that of the
baseline (2010). In addition, iP[.01] of SIXE (2010) is im-
proved by 10% compared with that of the baseline (2010).
As a result, we improved the search accuracy by reconstruct-
ing the elements and limiting the extracted text size from
each XML document.
However, as the recall level increases, the interpolated pre-

cision of SIXE decreases sharply using the INEX 2010 test
collection. Moreover, the retrieved text size is decreased
considerably. These circumstances indicate that EL surely
prevents search engines from extracting irrelevant elements,
but there are some relevant parts that are actually relevant
elements.

5.4 Experiments Related to a Refined Ranked
List

In this section, we evaluate the e�ectiveness of the re�ned
ranked list in order to construct a re�ned ranked list, and
we can use the approaches for scoring BU and TD that are
described in Section 4.3.

5.4.1 The Best Approach forBU

We performed some experiments to explore the most ef-
fective approach for BU. We proposed three approaches for
calculating the BU score in Section 4.3.1. The approaches
are as follows: (1) integrating the scores of the ancestor el-
ement and the descendant elements by a constant fraction,
(2) integrating the scores by a ratio of the lengths of the



Table 4: iP[.01] at each γ (Equation 3)
γ 0.0 0.1 0.2 0.3 0.4 0.5

iP[.01] .398 .409 .427 .452 .479 .498
MAiP .102 .105 .106 .109 .115 .120

γ 0.6 0.7 0.8 0.9 1.0
iP[.01] .520 .551 .575 .576 .578
MAiP .126 .130 .134 .135 .137

Table 5: iP[.01] at each γ (Equation 5)
γ 0.0 0.1 0.2 0.3 0.4 0.5

iP[.01] .461 .485 .512 .550 .605 .665
MAiP .108 .115 .126 .142 .165 .189

γ 0.6 0.7 0.8 0.9 1.0
iP[.01] .669 .667 .626 .665 .665
MAiP .190 .190 .190 .189 .189

ancestor XML element and that of its descendant elements,
and (3) combining approaches (1) and (2).
We evaluated the search accuracy by changing γ, which

is the ratio of the e�ect of an ancestor element from 0.0 to
1.0 by 0.1 steps, using Equation 3 (Table 4) and Equation 5
(Table 5). We do not have to examine the search accuracy
of Equation 4 individually, because the result of Equation 4
is equal to that of Equation 5 when γ = 0.5.
The results of the two tables show that each iP[.01] of ap-

proach (3) is higher than that of approach (2); besides, the
iP[.01] of approach (3) with γ = 0.6 is higher than that of
γ = 0.5. On the basis of these results, the most e�ective ap-
proach for BU is calculated by approach (3), which integrates
the scores by a constant ratio after re-scoring with a ratio of
the length of the two elements with γ = 0.6. Therefore, we
use Equation 5 with γ = 0.6 in the latter experiments with
the two collections.

5.4.2 Effectiveness of Scoring Methods for a Refined
Ranked List

We move to the experiments for a re�ned ranked list. As
summarized in Table 6, both of these methods, as well as a
mixture of the two methods (BU-TD), improved the search
accuracy versus SIXEin the INEX 2008 test collection. Note
that TD increased signi�cantly the size of the retrieved XML
elements in a ranked list. This is an unpleasant result, be-
cause we believe that the XML element search should pro-
duce search results that are small rather than large, because
larger should const to usets. Conversely, BU and BU-TD
did not increase the size of the retrieved XML elements
as much. Furthermore, BU-TD can search most accurately
among these scoring methods.
Therefore, BU-TD is the most suitable method for our pro-

posal. Finally, the iP[.01] of the proposed method is im-
proved by 9% compared to that of the baseline.
On the other hand, only BU could improve the search

accuracy in the INEX 2010 test collection. There are two
possibilities why the search accuracy of TD decreased. First,
it is not always true that an element in an XML document
that contains many kinds of query keywords is e�ective. Sec-
ond, we could not generate good SIXE, and it may contain
some irrelevant elements. From the fact that both the iP[.01]

and the MAiP of the baseline in the INEX 2010 test collec-
tion are lower than that in the INEX 2008 test collection,
the simple ranked list may contain some irrelevant elements.
Therefore, we should remove such irrelevant elements from
the simple ranked list to tackle the lower accuracy compared
with the INEX 2008 test collection.
Furthermore, we compared our approach with other ap-

proaches in which INEX plays a part. Table 7 compares our
proposed method (BU-TDwith the INEX 2008 and BU with
the INEX 2010) with three other competitive XML search
engines [6]. Only four engines (including ours) were evalu-
ated in the INEX 2008 test collection. In the experiments,
our proposed method provides the highest precision when
the recall level is less than or equal to iP[.01]. Because the
o�cial measure for the focused task is iP[.01], our engine
has the highest level of accuracy.
We also compared our method with the other top-three

teams in the INEX 2010 test collection in [1]. The result
shows that our method has a higher score in iP[.01] 8.

5.5 Comparisons to Document Search
We �nally compared our method (BU-TD with the INEX

2008 and BU with the INEX 2010) with a traditional doc-
ument search, because a document search is often reported
as being more e�ective than an XML element search [6]. In
a document search, a set of the entire XML documents is
returned as a search result generated by BM25E. In this ex-
periment, we used all queries that return the entire XML
documents in both of the INEX test collections.
As shown in Figure 10, the results of our experiments

showed that all of the interpolated precisions at each recall
level of the method BU-TD (2008) are higher than those of
the document search (2008). This indicates that an XML
element search is more e�ective than a document search. On
the other hand, BU (2010) also overwhelmed the document
search (2010) in recall levels including iP[.01]. Therefore, we
conclude that an XML element search can be useful.
Furthermore, we note that the retrieved text size of our

proposed method is substantially smaller than that of a doc-
ument search. As such, we present more focused content to
users, which saves them time and energy.

6. CONCLUSION
In this paper, we proposed a method for improving the

e�ectiveness of XML element search. We attempted to iden-
tify XML elements that are relevant to a given query. We
scored only these XML elements in order to generate a re-
�ned ranked list.
The experimental results show that our method is more ef-

fective than the traditional approaches, one of which we used
as a comparative baseline. We also found that the accuracy
of an XML element search can be improved by reconstruct-
ing the XML elements and emphasizing the informative ones
by applying the statistics of the descendant XML elements.
We also keep to a minimum in increasing the text size of the
retrieved XML elements, implying that users do not have to
sift through larger elements to �nd the information they are

8INEX o�cial runs requires search engines to extract 1,000
characters per a query in INEX 2010. To compare with the
other systems, we show the search accuracy of the proposed
method that extracts 1,000 characters per a query. This is
the reason why the result is very di�erent from Table 6.



Table 6: E�ect of scoring methods INEX 2008 and INEX 2010
INEX 2008 BU BU-TD TD SIXE　 baseline
iP[.01] .668 .669 .662 .660 .613
MAiP .191 .196 .242 .240 .171

retrieved size (bytes) 1.43× 108 1.43× 108 2.28× 108 1.43× 108 1.30× 108

INEX 2010 BU BU-TD TD SIXE　 baseline
iP[.01] .437 .410 .384 .422 .382
MAiP .0952 .117 .138 .0930 .144

retrieved size (bytes) 1.76× 108 1.57× 108 3.68× 108 1.76× 108 3.75× 108

Table 7: Comparison of four INEX participant search engines including our proposed engine
INEX 2008 iP[.00] iP[.01] iP[.05] iP[.10] MAiP

Doshisha Univ. .7092 .6691 .5606 .5046 .2417
Renmin Univ. of China .5969 .5969 .5815 .5439 .2486

Queensland Univ. of Technology .6232 .6220 .5521 .4617 .2134
Univ. of Amsterdam .6514 .6379 .5901 .5280 .2261

INEX 2010 char prec iP[.01] iP[.05] iP[.10] MAiP
Doshisha Univ. .3884 .1822 .0382 .0000 .0088

Univ. Pierre et Marie Curie .4125 .1012 .0385 .0000 .0076
Univ. of Helsinki .3435 .1186 .0273 .0000 .0069

Lia Univ. of Avignon .3434 .1500 .0000 .0000 .0077
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Figure 10: Comparison of XML element search and docu-
ment search

searching for. Furthermore, we found that the search accu-
racy of our method depends on the scoring function used to
generate an initial simple ranked list. In our experiments,
BM25E is the most e�ective scoring method, because it gives
high scores to variously sized XML elements.
We set the threshold ofELmanually in this article. There-

fore, one of our future challenges is to automatically decide
the best parameters of EL. Another challenge is that the
proposed method gets harmful in�uence from the irrelevant
elements in a simple ranked list. This means that we should
consider an approach to remove the irrelevant parts in a
simple ranked list to improve search accuracy.
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